SAMPLE

I. MULTIPLE CHOICE: #1-13: Directions: For the following multiple choice questions, place your answer on the blank space provided using only CAPITAL LETTERS. No work is required for the multiple choice questions.

1. _____ For the limit $\lim_{x \to -2} (-5x + 4) = 14$ when constructing a delta-epsilon proof according to the method demonstrated in class, what would be the choice for delta?

A. Choose
$$\delta = \frac{\varepsilon}{|-2|}$$
 B. Choose $\delta = \frac{\varepsilon}{-5}$ **C**. Choose $\delta = \frac{\varepsilon}{|14|}$ **D**. Choose $\delta = \frac{\varepsilon}{|-5|}$ **E**. None of these

- 2. _____ Given that $\lim_{x \to 7} f(x) = 3$, based on that alone, which of the following <u>MUST</u> be true?
 - A. All of B, C, and D must be true. B. f(7) = 3D. f(x) is continuous at x = 7E. None of these
- 3. _____ When constructing a delta-epsilon proof according to the method demonstrated in class, what is the <u>third step</u> of the three steps?
 - **A.** Verify δ . **B.** Let $\varepsilon > 0$. **C.** Show $\varepsilon = \delta$. **D.** Search for δ . **E.** None of these
- 4. _____ Which of the following limits will require more work than just direct substitution?
 - **A**. All of B, C and D **B**. $\lim_{x \to 8} \left(\frac{x-8}{x^2-64}\right)$ **C**. $\lim_{x \to 9} \left(\frac{x^2-81}{x+9}\right)$ **D**. $\lim_{x \to -\pi} \sin x$ **E**. None of these

5. _____ For the function
$$f(x) = \begin{cases} x^2 - 6, & x < 7 \\ 3x + 4, & x \ge 7 \end{cases}$$
 what is the value of $\lim_{x \to 7^-} f(x) = ?$
A. The limit does not exist **B**. 43 **C**. 25 **D**. 7 **E**. None of these

- 6. _____ Given that a function f(x) is continuous at x = 5, based on that alone, which of the following <u>MUST</u> be true?
 - A. All of B, C, and D must be true. B. f(5) is defined C. $\lim_{x \to 5} f(x)$ exists D. $\lim_{x \to 5} f(x) = f(5)$ E. None of these

7. _____ Given that $\lim_{x\to 5^-} f(x) = 27$, based on that alone, which of the following <u>MUST</u> be true?

A. All of B, C, and D must be true. **D**. f(5) = 27

B.
$$\lim_{x \to 5^+} f(x) = 27$$

C. $\lim_{x \to 5} f(x) = 27$
E. None of these

8. _____ For what x-values is the function
$$f(x) = \frac{x-5}{x^2-7x+12}$$
 discontinuous?
A. $x = 5 \& x = 3 \& x = 4$
B. $x = 5 \& x = -3 \& x = -4$
C. $x = 3 \& x = 4$
D. $x = 5$
E. None of these

9. _____ Which of the following functions is continuous for all x-values in the interval $(-\infty, \infty)$?

A. All of B, C, and D B. $f(x) = \sec(x) - 7x$ C. $f(x) = \frac{|x-4|}{x-4}$ D. $f(x) = \begin{cases} x^2 + 1, & x \le -2 \\ -6x - 7, & x > -2 \end{cases}$ E. None of these

10. What are the x-values where the function $f(x) = \cot(x) - \csc(x)$ is **discontinuous**? **A.** All x-values such that $x = (2n + 1) \cdot \pi$ **B.** All x-values such that $x = (2n + 1) \cdot \frac{\pi}{2}$ **C.** All x-values such that $x = 2n \cdot \pi$ **D.** All x-values such that $x = n \cdot \pi$ **E.** None of these

11. _____ Use the following graph of f(x) to determine the limit: $\lim_{x \to 1} f(x) = ?$

- A. $\lim_{x \to 1} f(x) = 2$ B. $\lim_{x \to 1} f(x) = 4$ C. $\lim_{x \to 1} f(x) = 1$ D. The limit does not exist.
- **E**. None of these

12. _____ Determine which of the following limits DOES NOT EXIST:

A. $\lim_{x \to \frac{\pi}{2}} \cos x$ B. $\lim_{x \to -3} \left(\frac{x+3}{x+6} \right)$ C. $\lim_{x \to 7} \left(\frac{x^2-49}{x-7} \right)$ D. $\lim_{x \to 4} \left(\frac{x+9}{4-x} \right)$ E. None of these

