I. FOR THE GIVEN VECTORS, COMPUTE THE INDICATED ITEMS, SHOWING ALL YOUR WORK ON THE EXTRA SHEETS. NOTE THAT THE SYMBOL " ● " REPRESENTS DOT PRODUCT.

1.
$$\vec{v} = \langle 4, -1 \rangle$$
 $\vec{w} = \langle -5, -3 \rangle$

$$\vec{w} = \langle -5, -3 \rangle$$

a.
$$\|\vec{v}\|$$

b.
$$10\vec{v} - 3\vec{v}$$

c.
$$\|\vec{v} - \vec{w}\|$$

$$\vec{v} = 6\vec{i} - 2\vec{j}$$

$$\vec{w} = 5$$

$$\vec{t} = 3\vec{i} - \vec{j}$$

a.
$$\vec{v} \bullet \vec{w}$$

a.
$$\|\vec{v}\|$$
 b. $10\vec{v} - 3\vec{w}$ c. $\|\vec{v} - \vec{w}\|$
2. $\vec{v} = 6\vec{i} - 2\vec{j}$ $\vec{w} = 5\vec{i}$ $\vec{t} = 3\vec{i} - \vec{j}$
a. $\vec{v} \cdot \vec{w}$ b. $\vec{t} \cdot (\vec{v} + \vec{w})$ c. $\vec{0} \cdot \vec{w}$

c.
$$\vec{0} \bullet \vec{n}$$

- d. Find θ , the angle between vectors \vec{v} & \vec{t} .
- e. Find a unit vector in the same direction as vector \overrightarrow{W}
- f. Present a computation to determine whether the vectors $\vec{w} & \vec{t}$ are orthogonal.

II. EVALUATE EACH DETERMINANT.

3.
$$\begin{vmatrix} 4 & 6 \\ 1 & -5 \end{vmatrix}$$

4.
$$\begin{vmatrix} 10 & 3 \\ -5 & -2 \end{vmatrix}$$

3.
$$\begin{vmatrix} 4 & 6 \\ 1 & -5 \end{vmatrix}$$
4. $\begin{vmatrix} 10 & 3 \\ -5 & -2 \end{vmatrix}$
4. $\begin{vmatrix} 1 & 2 & 3 \\ -2 & 1 & 1 \\ 4 & 1 & -2 \end{vmatrix}$

III. FOR THE GIVEN VECTORS, COMPUTE THE INDICATED ITEMS.

$$\vec{v} = 3\vec{i} - \vec{j} + \vec{k}$$

$$\vec{v} = 3\vec{i} - \vec{j} + \vec{k} \qquad \vec{w} = -\vec{i} + 2\vec{j} + \vec{k}$$
5. $\|\vec{v} - \vec{w}\|$
6. $\vec{v} \bullet \vec{w}$
7. $\vec{v} \times \vec{w}$

$$5. \quad \|\vec{v} - \vec{w}\|$$

6.
$$\vec{v} \bullet \vec{u}$$

7.
$$\vec{v} \times \vec{u}$$