- 1. $2\cos(x) + 8 = 7$
- 2. tan(x) + 1 = 0 SOLVE IN THE INTERVAL $(-\infty, \infty)$
- 3. $4\sin^2(x) + 2 = 5$ Note: $\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}$ (Just in case you were wondering.)
- 4. $(\cos(x)+1)(\tan(x)-1) = 0$
- 5. $5\tan(x) + 1.6 = -11.4$
- 6. $3 \sec(x) + 10 = 4$
- 7. $\sin(x) = 0$ SOLVE IN THE INTERVAL $(-\infty, \infty)$
- 8. $2\sin(x)\tan(x) + \tan(x) = 0$
- 9. $4.3\sin(x) + 2.1 = 3.9$ SOLVE IN THE INTERVAL $(-\infty, \infty)$
- 1. $2\cos(x) + 8 = 7$ SOLVE IN THE INTERVAL $(-\infty, \infty)$
- 2. $\tan(x) + 1 = 0$
- 3. $3\sec(x) + 10 = 4$
- 4. $\sin(x) = 0$ SOLVE IN THE INTERVAL $(-\infty, \infty)$
- 5. $2\sin(x)\cos(x) + \cos(x) = 0$
- 6. $4.3\sin(x) + 2.1 = 3.9$ SOLVE IN THE INTERVAL $(-\infty, \infty)$

**** 10. $3\cos^2(2x) + 1 = 4$

11. $\csc(\frac{1}{2}x) + 1 = 0$