Section 1

I. Vocabulary

Complete the definition of each item:

- 1. One DEGREE corresponds to ______ of one complete revolution
- 2. An angle is ACUTE if its degree measure is _____
- 3. An angle is A RIGHT ANGLE if its degree measure is _____
- 4. An angle is OBTUSE if its degree measure is _____
- 5. An angle is A STRAIGHT ANGLE if its degree measure is _____
- 6. An angle is A REFLEX ANGLE if its degree measure is _____
- 7. An angle's measure is POSITIVE if the direction of its rotation is _____
- 8. An angle's measure is NEGATIVE if the direction of its rotation is _____
- 9. Two angles are COMPLEMENTARY if _____
- 10. Two angles are SUPPLEMENTARY if ______
- II. Find the measure of (a) the complement and (b) the supplement of each given angle.

Example: $\theta = 54^{\circ}$ Solution: (a) $\theta_c = 90^{\circ} - 54^{\circ} = 36^{\circ}$ (b) $\theta_s = 180^{\circ} - 54^{\circ} = 126^{\circ}$ 11. $\theta = 35^{\circ}$ 12. $\theta = 72^{\circ}$ 13. $\theta = 45^{\circ}$ 14. $\theta = 6^{\circ}$ 15. $\theta = 0^{\circ}$ 16. $\theta = 80^{\circ}$ 17. $\theta = 17^{\circ}$ 18. $\theta = 63^{\circ}$ 19. $\theta = 33^{\circ}$ 20. $\theta = 49^{\circ}$

II. Find the measure of the supplement of each given angle.

Example: $\theta = 122^{\circ}$

- Solution: $\theta_{s} = 180^{\circ} 122^{\circ} = 158^{\circ}$
- 21. $\theta = 112^{\circ}$ 22. $\theta = 167^{\circ}$ 23. $\theta = 90^{\circ}$ 24. $\theta = 135^{\circ}$ 25. $\theta = 0^{\circ}$
- III. Find the measure of each indicated angle, α and β . Example:

Solution:

Since the angles are supplementary we have $\alpha + \beta = 180$ $\Rightarrow 29x + 12 + 5x - 2 = 180$ $\Rightarrow 34x + 10 = 180$ $\Rightarrow 34x = 170$ $\Rightarrow x = 5$ $\Rightarrow \alpha = 29(5) + 12 = 157$ $\Rightarrow \beta = 5(5) - 2 = 23$

26.

IIII. Find the angle of least positive measure (not equal to the given value) which is coterminal with each angle. Example: (a) $\theta = 42^{\circ}$ (b) $\theta = 435^{\circ}$ (c) $\theta = -470^{\circ}$ (d) $\theta = 333^{\circ}$ (e) $\theta = 1140^{\circ}$ Solution: (a) Add on one rotation: $\theta_1 = 42^{\circ} + 360^{\circ} = \boxed{402^{\circ}}$ (b) Subtract off one rotation: $\theta_1 = 435^{\circ} - 360^{\circ} = \boxed{75^{\circ}}$ (c) Add on one rotation: $\theta_1 = -470^{\circ} + 360^{\circ} = -110^{\circ}$ Add on another rotation: $\theta_1 = -110^{\circ} + 360^{\circ} = \boxed{250^{\circ}}$

OR

Add on TWO rotations: $\theta_1 = -470^\circ + 720^\circ = 250^\circ$

(d) Add on one rotation:
$$\theta_1 = 333^\circ + 360^\circ = \boxed{693^\circ}$$

(e) Subtract off three rotations: $\theta_1 = 1140^\circ - 1080^\circ = \boxed{60^\circ}$
32. $\theta = 67^\circ$
33. $\theta = 180^\circ$
34. $\theta = -216^\circ$
35. $\theta = -52^\circ$
36. $\theta = 1255^\circ$
37. $\theta = 0^\circ$
38. $\theta = 33^\circ$
39. $\theta = -296^\circ$

V. Find two positive and two negative angles that are coterminal with the given angle. Example: (a) $\theta = 30^{\circ}$ (b) $\theta = 90^{\circ}$ Solution: (a) Add one then two rotations: $\theta_1 = 30^{\circ} + 360^{\circ} = \boxed{390^{\circ}}$ $\theta_2 = 390^{\circ} + 360^{\circ} = \boxed{750^{\circ}}$ Subtract one then two rotations: $\theta_3 = 30^{\circ} - 360^{\circ} = \boxed{-330^{\circ}}$ $\theta_4 = -330^{\circ} - 360^{\circ} = \boxed{-690^{\circ}}$ 40. $\theta = 105^{\circ}$ 41. $\theta = -180^{\circ}$ 42. $\theta = 225^{\circ}$ 43. $\theta = 10^{\circ}$

Write an expression that generates all the angles coterminal with the given angle.

44.
$$\theta = 67^{\circ}$$
 45. $\theta = 180^{\circ}$ 46. $\theta = -216^{\circ}$ 47. $\theta = -52^{\circ}$

ANSWERS:

* * * answers will be listed here* * *