Trigonometry Chapter 1

Section 4

I. Vocabulary

Complete each statement:

1. In order to distinguish between the homonyms "sine" and "sign" we introduce the term ______ to be used in lieu of "sign" to avoid confusion.

2. An ______ is an equation which is true for all values of the variables for which the equation is defined.

3. The RECIPROCAL IDENTITIES:

EXTREMELY IMPORTANT NOTE!: The RECIPROCAL and QUOTIENT identities ABSOLUTELY MUST be memorized. Your future success in the course hinges on this!

4. The QUADRANTS of the coordinate plane are:

Note: For clairity reasons which will be discussed in class, I will use QIIII (rather than QIV) to indicate QUADRANT FOUR. You may use either, as long as your writing is unambiguous.

II. Assume θ is a standard position angle and that the terminal side of θ passes through the given point. State the Quadrant in which the angle lies. If it does not lie in one of the quadrants, write: "None because it is Quadrantal". Example:

16. $(-7, -10)$ 17. $(5, 2)$ 18. $(-6, 14)$ 19. $(-6, -6, 14)$	-2) 20. $(7, -7)$
--	-------------------

III. Find the value of the indicated trig function using the given information and the appropriate reciprocal identity. If a value contains a radical, express the value in two forms: with the radical in the numerator and also with the radical in the denominator. You should also write out the reciprocal identity you use. If the given value is a decimal, express your result as a decimal rounded to two decimal places.

Example:

Find
$$\cos(\theta)$$
; Given $\sec(\theta) = \frac{8}{3}$
Solution: $\cos(\theta) = \boxed{-\frac{3}{8}}$ Identity: $\boxed{\cos(\theta) = \frac{1}{\sec(\theta)}}$ Note: $\cos(\theta) = \frac{1}{\sec(\theta)} = \frac{1}{-\frac{8}{3}} = 1 \cdot \left(-\frac{3}{8}\right) = \boxed{-\frac{3}{8}}$

Find $\tan(\beta)$; Given $\cot(\beta) = \frac{2}{\sqrt{7}}$ Solution: $\tan(\beta) = \frac{\sqrt{7}}{2} = \frac{7}{2\sqrt{7}}$ Identity: $\tan(\beta) = \frac{1}{\cot(\beta)}$ Note: $\frac{\sqrt{7}}{2} = \frac{\sqrt{7} \cdot \sqrt{7}}{2 \cdot \sqrt{7}} = \frac{7}{2\sqrt{7}}$

21. Find $\csc(\phi)$; Given $\sin(\phi) = \frac{6}{11}$ 22. Find $\cot(\theta)$; Given $\tan(\theta) = 7$ 23. Find $\cos(\alpha)$; Given $\sec(\alpha) = -\frac{\sqrt{13}}{3}$ 24. Find $\sin(\gamma)$; Given $\csc(\gamma) = \sqrt{5}$ 25. Find $\cos(\alpha)$; Given $\sec(\alpha) = 6.5$ 26. Find $\tan(\beta)$; Given $\cot(\beta) = -4.2$ 27. Find $\sin(\theta)$; Given $\csc(\theta) = \frac{2}{\sqrt{15}}$ 28. Find $\csc(\phi)$; Given $\sin(\phi) = .47$

IIII. State the signum of each of the trig functions for the given standard position angle. Example: $\phi = 142^{\circ}$

Solution: $\phi = 142^{\circ}$ is a QII angle so using		angle so using		A,	va hava
		T		с	ve nave.
	$sin(\phi)$ is Positive $cos(\phi)$ is Negative $tan(\phi)$ is Negative	$\csc(\phi)$ is Positive $\sec(\phi)$ is Negative $\cot(\phi)$ is Negative			
$29. \theta = 251^{\circ}$	30. $\theta = 18^{\circ}$	31. $\theta = 330^{\circ}$	32.	$\theta = -20$)7°
33. $\theta = 194^{\circ}$	34. $\theta = 518^{\circ}$	35. $\theta = -64^{\circ}$	36.	$\theta = 101$	0°

V. Identify the quadrant that satisfies the given conditions for the given angle.

Example: $\sec(\alpha) < 0$, $\tan(\alpha) < 0$

Solution: $\sec(\alpha) < 0 \Rightarrow$ QII or QIII ($\sec(\alpha)$ has the same signum as $\cos(\alpha)$)

- 37. $\cos(\theta) < 0, \ \tan(\theta) > 0$ 38. $\csc(\gamma) > 0, \ \cos(\gamma) > 0$ 39. $\tan(\lambda) > 0, \ \csc(\lambda) > 0$ 40. $\sin(\phi) < 0, \ \cos(\phi) < 0$ 41. $\cot(\beta) < 0, \ \csc(\beta) < 0$ 42. $\sec(\theta) > 0, \ \cot(\theta) > 0$ 43. $\sec(\alpha) > 0, \ \sin(\alpha) < 0$ 44. $\sin(\theta) < 0, \ \cot(\theta) > 0$ 45. $\cot(\phi) < 0, \ \sec(\phi) > 0$
- VI. Use the Pythagorean Identities and the Reciprocal Identities to find the requested value. Write out the identity before you use it.

If a result contains a radical, express it with the radical in the numerator. If a result is in decimal form, express it rounded to two decimal places.

Example: Find $\csc(\theta)$ given that $\cot(\theta) = -\frac{\sqrt{11}}{3}$ and θ is in QIIII.

Solution:

$$\csc^{2}(\theta) = 1 + \cot^{2}(\theta)$$
So we have:

$$= 1 + \left(-\frac{\sqrt{11}}{3}\right)^{2}$$
So we have:

$$= 1 + \left(-\frac{\sqrt{11}}{3}\right)^{2}$$
So we have:

$$\csc(\theta) = \pm \sqrt{\frac{20}{9}}$$
So we have:

$$\csc(\theta) = \pm \sqrt{\frac{20}{\sqrt{9}}}$$

$$= \pm \frac{\sqrt{20}}{\sqrt{9}}$$

$$= \pm \frac{\sqrt{20}}{\sqrt{9}}$$

$$= \pm \frac{5\sqrt{2}}{3}$$

$$= 1 + \frac{11}{9}$$

$$= \frac{20}{9}$$
So we have:

$$\csc(\theta) = \begin{bmatrix} \pm \frac{5\sqrt{2}}{3} \\ - \pm \frac{5\sqrt{2}}{3} \end{bmatrix}$$
So we have:

$$\sec(\theta) = \begin{bmatrix} \pm \frac{5\sqrt{2}}{3} \\ - \pm \frac{5\sqrt{2}}{3} \end{bmatrix}$$

$$\csc(\theta) = \begin{bmatrix} \pm \frac{5\sqrt{2}}{3} \\ - \pm \frac{5\sqrt{2}}{3} \end{bmatrix}$$

Example: Find $\cot(\alpha)$ given that $\cos(\alpha) = -.38$ and α is in QIII.

Solution: We wish to use $\cot^2(\alpha) = \csc^2(\alpha) - 1$ so first we must find $\csc^2(\alpha) = \frac{1}{\sin^2(\alpha)}$

To do this we use
$$\sin^2(\alpha) = 1 - \cos^2(\alpha)$$

 $\sin^2(\alpha) = 1 - \cos^2(\alpha)$ So we have:
 $= 1 - (-.38)^2$ $\cot^2(\alpha) = \csc^2(\alpha) - 1$ in QIII we know
 $= .16887...$ $\cot(\alpha) = .16887...$
So $\cot(\alpha) = .16887...$ $\cot(\alpha) = .410816...$ ∞
 $\sin^2(\alpha) = \frac{1}{\sin^2(\alpha)}$ $\cot(\alpha) = \pm \sqrt{.16877...}$ $\approx \underline{[.41]}$

46. Find
$$\tan(\phi)$$
 given that $\sec(\phi) = \frac{15}{4}$ and ϕ is in QI.

 $=\frac{1}{.8556}$ =1.16877...

47. Find
$$\cos(\theta)$$
 given that $\sin(\theta) = \frac{1}{4}$ and θ is in QII.
48. Find $\csc(\beta)$ given that $\cot(\beta) = -\frac{3}{\sqrt{17}}$ and β is in QIIII.

49. Find
$$\sec(\theta)$$
 given that $\cot(\theta) = \frac{\sqrt{37}}{2}$ and θ is in QIII.

50. Find
$$\cot(\alpha)$$
 given that $\cos(\alpha) = -\frac{\sqrt{7}}{5}$ and α is in QII.

51. Find $tan(\gamma)$ given that $sin(\gamma) = .75$ and γ is in QI.

52. Find
$$\sin(\theta)$$
 given that $\sec(\theta) = \frac{6}{11}$ and θ is in QIIII.

VII. Use the \mathcal{X} , \mathcal{Y} , \mathcal{Y} definitions and the given information to find the values of the remaining five trig functions. If a result contains a single radical, express it both with the radical in the numerator and with the radical in the denominator. If a result is in decimal form, express it rounded to two decimal places.

Example: Given
$$\cot(\theta) = -\frac{\sqrt{13}}{3}$$
 and θ is in QII.

Solution: We must decide where the negative sign goes.

$$\cot(\theta) = \frac{x}{y} \text{ and}$$

$$\theta \text{ in QII} \implies x < 0 \& y > 0$$

$$\implies x = -\sqrt{13} \& y = 3$$
So we have:
$$r = \sqrt{x^2 + y^2}$$

$$= \sqrt{(3)^2 + (-\sqrt{13})^2}$$

$$= \sqrt{9 + 13}$$

$$= \sqrt{22}$$
So this gives us:
$$\sin(\theta) = \frac{y}{r} = \boxed{\frac{3}{\sqrt{22}}} = \boxed{\csc(\theta)} = \frac{r}{y} = \boxed{\frac{\sqrt{22}}{3}} = \boxed{\frac{22}{3\sqrt{22}}}$$

$$\cos(\theta) = \frac{x}{r} = \boxed{-\sqrt{13}}$$

$$\sec(\theta) = \frac{r}{x} = \boxed{\frac{\sqrt{22}}{-\sqrt{13}}}$$

$$\tan(\theta) = \frac{y}{x} = \boxed{-\frac{3}{\sqrt{13}}} = \boxed{-\frac{3\sqrt{13}}{13}}$$

$$\cot(\theta) = \frac{x}{y} = \boxed{-\frac{\sqrt{13}}{3}} = \boxed{-\frac{13}{3\sqrt{13}}}$$

Example: Given $\tan(\alpha) = 6$ and $\sec(\alpha) < 0$.

Solution: We have $\tan(\alpha) > 0 \& \sec(\alpha) < 0 \Longrightarrow \alpha$ is in QIII.

$$\tan(\alpha) = 6 = \frac{y}{x} = \frac{6}{1} \text{ and}$$

$$\alpha \text{ in } \Rightarrow x < 0 \& y < 0$$
QIII $\Rightarrow x = -1 \& y = -6$
So we use:
$$\tan(\alpha) = \frac{-6}{-1}$$
and we have:
$$r = \sqrt{x^2 + y^2}$$

$$= \sqrt{(-1)^2 + (-6)^2}$$

$$= \sqrt{1+36}$$

$$= \sqrt{37}$$
So this gives us:
$$\sin(\theta) = \frac{y}{r} = \left[-\frac{6}{\sqrt{37}}\right] = \left[-\frac{6\sqrt{37}}{37}\right] \quad \csc(\theta) = \frac{r}{y} = \left[-\frac{\sqrt{37}}{6}\right] = \left[-\frac{37}{\sqrt{37}}\right]$$

$$\cos(\theta) = \frac{x}{r} = \left[-\frac{1}{\sqrt{37}}\right] = \left[-\frac{\sqrt{37}}{37}\right] \quad \sec(\theta) = \frac{r}{x} = \frac{\sqrt{37}}{-1} = \left[-\frac{\sqrt{37}}{\sqrt{37}}\right] = \left[-\frac{37}{\sqrt{37}}\right]$$

$$\tan(\theta) = \frac{y}{x} = \frac{6}{1} = \left[6\right] \qquad \cot(\theta) = \frac{x}{y} = \frac{-1}{-6} = \left[\frac{1}{6}\right]$$

53. Given
$$\tan(\beta) = -\frac{5}{3}$$
 and β is in QII.

54. Given
$$\sin(\phi) = \frac{\sqrt{2}}{2}$$
 and ϕ is in QI.

55. Given
$$\sec(\theta) = \frac{7}{2}$$
 and θ is in QIIII.

56. Given
$$\csc(\omega) = \frac{\sqrt{15}}{4}$$
 and ω is in QII.

57. Given
$$\cos(\theta) = -.44$$
 and θ is in QIII.

58. Given
$$\cot(\gamma) = 8$$
 and γ is in QIII.

VII. Use the X, Y, r definitions to show a derivation of each identity.

Example: Show that $\cot^2(\alpha) = \csc^2(\alpha) - 1$.

Solution: Start with the more complicated side: $RHS = \csc^2(\alpha) - 1$

$$= \left(\frac{r}{y}\right)^2 - 1$$
$$= \frac{r^2}{y^2} - \frac{y^2}{y^2}$$
$$= \frac{r^2 - y^2}{y^2}$$
$$= \frac{x^2}{y^2}$$
$$= \left(\frac{x}{y}\right)^2$$
$$= \cot^2(\alpha)$$
$$= LHS$$

Important note for this section: When the value of r was generated we used $r = \sqrt{x^2 + y^2}$. However, this is equivalent to each of the following; hence they are all true and may be freely used in any setting.

$$r^{2} = x^{2} + y^{2}, \qquad r^{2} - y^{2} = x^{2}, \qquad r^{2} - x^{2} = y^{2}$$

- 59. Show that $\sin^2(\phi) + \cos^2(\phi) = 1$.
- 60. Show that $\tan^2(\theta) + 1 = \sec^2(\theta)$.
- 61. Show that $\cos^2(\beta) = 1 \sin^2(\beta)$.