Trigonometry Chapter 2

Section 2

I.	Vocabulary					
1.	A REFERENCE ANGLE is alway	ys an	angle and	l is always has		
2.	For non–	angles θ, β, ϕ, x , etc, th	e symbols for	r the REFEREN	ICE ANGLES	
3	are For any non-	angle θ the $\theta_{\rm p}$ is the	he		angle formed by	
	the	and the	side of	θ	ligio i officio off	
4. 5.	The only angles which do not have Two angles in standard position are but different amounts of rotat	e a REFERENCE ANGLE re COTERMINAL ANGLE ion.	are S if they have	e the same	angles.	side
6.	If two angles, $lpha$ and eta , are	then	α_{R}	$eta_{\scriptscriptstyle R}$ and		
	$\sin(\alpha) = $	$__=\csc(\beta)$				
	$_=\cos(\beta)$	$sec(\alpha) = $				
	$_$ = tan(β)	$__=\cot(\beta)$				
7.	The values of any trig function of the SIGNUM.	an angle and its		_ ANGLE are e	qual except for possil	bly
8.	If an angle $ heta$ is given then to dete	ermine the value of θ_R :				
	In QI, the reference angle	the a	ngle.			
	In QII, $\theta_R = (__)^\circ$					
	In QIII, $\theta_R = (__)^\circ$					
	In QIIII, $\theta_R = (__)^{\prime}$	0				
9.	If the value of θ_R is given then to	o determine the value of $ heta$	':			
	In QI, the reference angle	the a	ngle.			
	In QII, $\theta = (\underline{\qquad} \theta_R)^\circ$					
	In QIII, $\theta = (\underline{\qquad} \theta_R)^\circ$)				
	In QIIII, $\theta = (\underline{\qquad} \theta_{R})$	0				
10	For any angles, θ , β , ϕ , x , etc. $\theta \pm \underline{\qquad}^{\circ} \cdot n$, $\beta \pm \underline{\qquad}^{\circ}$, we represent the FAMILY $\cdot n$, $\phi _ _^{\circ} \cdot n$, x	OF ALL AN	GLES COTER	MINAL TO θ by: $\theta \in \{0, 1, 2, 3,\}$	
11	. The REFERENCE ANGLE FAM	AILY for a reference angle,	θ_R is given	by:		
	In QII, $\theta = (\underline{\qquad} \theta_R)^\circ$	In QI, the refere	nce angle		the angle.	
	In QIII, $\theta = (\underline{\qquad} \theta_R)^c$	In QIIII, $\theta = ($	$\underline{\qquad} \theta_{R}$	0		

12. The PICTURES of the REFERENCE ANGLE FAMILY for a reference angle, θ_R are:

QII

QI

QIII QIIII

II.	Find the reference angle for Example:	each	given angle.			
a)	$\alpha = 220^{\circ}$		b) $\delta = -110^{\circ}$)	c)	$\theta = 660^{\circ}$
a)	Note that α is a QIII angle So we have: $\alpha_R = 220^\circ - 180^\circ = 40^\circ$		b) Note that δ $0^{\circ} < \delta < 30^{\circ}$ coterminal a $\delta_1 = (-110^{\circ})^{\circ}$ Thus, δ is So we have $\delta_R = (250^{\circ})^{\circ}$ $= 70^{\circ}$	is not in the interval 50° so first find a angle in that interval: 0+360)° a QIII angle. : -180)°	c)	Note that θ is not in the interval $0^{\circ} < \theta < 360^{\circ}$ so first find a coterminal angle in that interval: $\theta_1 = (660 - 360)^{\circ}$ $= 300^{\circ}$ Thus, θ is a QIIII angle. So we have: $\theta_R = (360 - 300)^{\circ}$ $= 60^{\circ}$
13.	$\theta = 316^{\circ}$	14.	$\phi = 122^{\circ}$	15. $\beta = 45^{\circ}$		16. $\theta = 256^{\circ}$
17.	$\alpha = 14^{\circ}$	18.	$\alpha = 281^{\circ}$	19. $\phi = 207$	D	20. $\theta = 168^{\circ}$
21.	$\theta = -33^{\circ}$	22.	$\theta = -195^{\circ}$	23. $\delta = 432$	0	24. $\beta = 570^{\circ}$
25.	$\lambda = 368^{\circ}$	26.	$\alpha = -60^{\circ}$	27. $\phi = 835^\circ$	þ	28. $\theta = -594^{\circ}$

a) the SIGNUM b) the reference angle

Example:

i) cos(60°)

Solution:

i) Note that this is a QI angle. So we have:
a) signum is *negative*b) in QI the reference angle is the angle, so θ_R = 60°
c) cos(60°) = -1/2

Example:

iii) csc(315°)

Solution:

- iii) This is a QIIII angle. So we have:a) signum is *negative*b) in QIIII the reference angle is:
 - $\theta = (360 \ 215)^\circ = 45^\circ$

$$\theta_R = (360 - 315)^\circ = [45^\circ]$$

c) $\csc(315^\circ)$ is the reciprocal of $\sin(315^\circ)$ so we have:

$$\csc(315^{\circ}) = \frac{1}{\sin(315^{\circ})} = \frac{1}{\sin(45^{\circ})} = -\frac{1}{\left(\frac{\sqrt{2}}{2}\right)}$$
$$= -1 \cdot \frac{2}{\sqrt{2}} = -\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = -\frac{2\sqrt{2}}{2} = -\frac{\sqrt{2}}{2}$$
$$\sin(30^{\circ}) \qquad 29. \ \tan(45^{\circ}) \qquad 30. \ \sec(45^{\circ}) \qquad 31. \ \cot(60^{\circ})$$
$$\cos(240^{\circ}) \qquad 33. \ \csc(150^{\circ}) \qquad 34. \ \tan(300^{\circ}) \qquad 35. \ \sin(135^{\circ})$$
$$\csc(330^{\circ}) \qquad 37. \ \cos(225^{\circ}) \qquad 38. \ \cot(30^{\circ}) \qquad 39. \ \sec(150^{\circ})$$
$$\cos(60^{\circ}) \qquad 41. \ \sin(45^{\circ}) \qquad 42. \ \tan(30^{\circ}) \qquad 43. \ \cos(30^{\circ})$$

Example:

28.

32.

36.

40.

sec(855°)

Solution: First find a coterminal angle in the interval $0^{\circ} < \theta < 360^{\circ}$ then proceed as before: $\theta = (855^{\circ} - 720^{\circ}) = 135^{\circ}$ This is a QII angle. So we have:

a) signum is *negative*

b) in QII the reference angle is: $\theta_R = (180 - 135)^\circ = 45^\circ$

- c) the EXACT value of the function (Do NOT express as a decimal approximation.) Express results with radicals in the numerators.
 - ii) tan(210°)
 - ii) This is a QIII angle. So we have: a) signum is *positive* b) in QIII the reference angle is: $\theta_R = (210 - 180)^\circ = 30^\circ$

c)
$$\tan(210^\circ) = \frac{1}{\sqrt{3}} = \boxed{\frac{\sqrt{3}}{3}}$$

c) $\sec(855^\circ)$ is the reciprocal of $\cos(855^\circ)$ so we have:

$$\sec(855^\circ) = \frac{1}{\cos(855^\circ)} = \frac{1}{\cos(45^\circ)} = -\frac{1}{\left(\frac{\sqrt{2}}{2}\right)}$$
$$= -1 \cdot \frac{2}{\sqrt{2}} = -\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = -\frac{2\sqrt{2}}{2} = \boxed{-\sqrt{2}}$$

44. cot(750°)

45. $\cos(945^{\circ})$

46. $sin(-330^{\circ})$

47.
$$tan(-45^{\circ})$$

- IIII. Solve each equation in the interval $(0^\circ, 360^\circ)$.
- II. Find the reference angle for each given angle.

Example:

a)
$$\sin(\beta) = -\frac{\sqrt{3}}{2}$$

Solution:

a)
$$\sin(\beta) = -\frac{\sqrt{3}}{2}$$

* Quadrant Check:
From the diagram

Т

we have $sin(\beta)$ is negative in QIII & QIIII

 * Reference Angle: From the diagram
 INSERT REF ANG DIAG HERE

С

we have $\beta_R = 60^\circ$ * Solve: QIII: $\beta = (180 + 60)^\circ = 240^\circ$

QIIII:
$$\beta = (360 - 60)^\circ = 300^\circ$$

b) $\cot(\theta) = 1$

b)
$$\cot(\theta) = 1$$

* Reciprocal of both sides:
 $\cot(\theta) = 1 \Rightarrow \tan(\theta) = \frac{1}{1} \Rightarrow \tan(\theta) = 1$
* Quadrant Check:
From the diagram
 $\frac{S}{T} = \frac{A}{C}$
we have $\tan(\theta)$ is positive in QI & QIII
* Reference Angle:
From the diagram
INSERT REF ANG DIAG HERE
we have $\theta_R = 45^\circ$
* Solve:

QI:
$$\theta = 45^{\circ}$$

QIII: $\theta = (180 + 45)^{\circ} = 225^{\circ}$

48.
$$\sin(\theta) = \frac{1}{2}$$
 49. $\tan(\theta) = -\frac{\sqrt{3}}{3}$

52.
$$\cot(\phi) = \frac{1}{\sqrt{3}}$$
 53. $\sin(\theta) = -\frac{\sqrt{3}}{2}$

48. $\sin(\theta) = \pm \frac{1}{2}$ 49. $\cos(\gamma) = \frac{\sqrt{3}}{2}$

50.
$$\cos(\alpha) = \frac{\sqrt{2}}{2}$$
 51. $\sec(\theta) = -2$

54.
$$\tan(\beta) = -1$$
 55. $\csc(\phi) = -$

 $\frac{2}{\sqrt{2}}$

50.
$$\sin(\alpha) = -\frac{\sqrt{2}}{2}$$
 51. $\tan(\theta) = \pm\sqrt{3}$

V. Find the GENERAL SOLUTION for each equation. Example:

$$\cos(\gamma) = -\frac{1}{2}$$

Solution:

a)
$$\cos(\gamma) = -\frac{1}{2}$$

* Quadrant Check:
we have $\cos(\gamma)$ is negative in QII & QIII
* Reference Angle:
we have $\gamma_R = 60^\circ$
* Solve:
QII: $\gamma = (180 - 60)^\circ \pm 360^\circ \cdot n = \boxed{120^\circ \pm 360n^\circ}$
QIII: $\gamma = (180 + 60)^\circ \pm 360^\circ \cdot n = \boxed{240^\circ \pm 360n^\circ}$

52.
$$\sin(\theta) = -\frac{\sqrt{3}}{2}$$
 53. $\cos(\theta) = \frac{1}{2}$