Trigonometry Chapter 2

Section 3

I. Basics

Complete each statement:

- 1. If $\sin(\theta)$ equals a number GREATER THAN ZERO, then θ is an angle in Quadrant _____ or ____.
- 2. If $tan(\theta)$ equals a number GREATER THAN ZERO, then θ is an angle in Quadrant _____ or ____.
- 3. If $sec(\theta)$ equals a number LESS THAN ZERO, then θ is an angle in Quadrant or .
- 4. If $\cos(\theta)$ equals a number GREATER THAN ZERO, then θ is an angle in Quadrant _____ or ____.
- 5. If $\csc(\theta)$ equals a number LESS THAN ZERO, then θ is an angle in Quadrant _____ or ____.
- 6. If $\cot(\theta)$ equals a number LESS THAN ZERO, then θ is an angle in Quadrant _____ or ____.
- 7. If $\cos(\theta)$ equals a number LESS THAN ZERO, then θ is an angle in Quadrant _____ or ____.
- 8. If $tan(\theta)$ equals a number LESS THAN ZERO, then θ is an angle in Quadrant _____ or ____.
- 9. If $\sin(\theta)$ equals a number LESS THAN ZERO, then θ is an angle in Quadrant _____ or ____.
- 10. If $\csc(\theta)$ equals a number GREATER THAN ZERO, then $\, \theta \,$ is an angle in Quadrant _____ or ____ .
- 11. If $\sec(\theta)$ equals a number GREATER THAN ZERO, then θ is an angle in Quadrant _____ or ____.
- 12. To solve $\sec(\theta) = constant$ first find the ______ of both sides of the equation, then solve using the procedure for _____ = constant .
- 13. To solve $\csc(\theta) = constant$ first find the ______ of both sides of the equation, then solve using the procedure for _____ = constant .
- 14. To solve $\cot(\theta) = constant$ first find the _______ of both sides of the equation, then solve using the procedure for _____ = constant .
- II. Find the value(s) of the angle(s) in the interval $(0^{\circ}, 90^{\circ})$ that satisfies each equation. Express your answer in degrees rounded to ONE decimal places.

Example:

a)
$$\cos(\theta) = .7384555$$

Solution:

a) * Quadrant Check:

$$\cos(\theta) > 0 \Rightarrow QI, QIIII$$

So we choose QI

* Reference Angle:

$$\theta_R = \cos^{-1}(.7384555)$$
$$= 42.39998646...$$

 ≈ 42.4

* Solve: In QI the Reference Angle IS the angle, so

$$\theta = 42.4^{\circ}$$

b)
$$\tan(\alpha) = -3.1146351$$

b) * Quadrant Check:

$$tan(\theta) < 0 \Rightarrow QII, QIIII$$

So we choose QII

* Reference Angle:

After Quadrant Check, IGNORE the negative SIGN

$$\alpha_R = \tan^{-1}(3.1146351)$$

$$= 72.19999884...$$

* Solve:

In QII we have

$$\alpha = (180 - 72.2)^{\circ}$$

- c) $\csc(\phi) = 1.7929332$
- c) * Reciprocal:

$$\sin(\phi) = \frac{1}{1.7929332}$$
$$= .5577452...$$

* Ouadrant Check:

$$\sin(\phi) > 0 \Rightarrow QI, QII$$

* Reference Angle:

$$\phi_R \approx \sin^{-1}(.5577452)$$

= 33.9000062...

* Solve:

QI:
$$\phi = 33.9^{\circ}$$

QII:
$$\phi = (180 - 33.9)^{\circ}$$

= $\boxed{146.1^{\circ}}$

15.
$$\cos(\theta) = .9626914$$

16.
$$\sin(\theta) = .9297768$$

17.
$$\sec(\beta) = -10.2476969$$

18.
$$\tan(\alpha) = -.30382319$$

19.
$$\csc(\theta) = 1.0163797$$

20.
$$\sin(\theta) = .3778413$$

III. Find the value(s) of the angle(s) in the interval $(0^{\circ}, 360^{\circ})$ that satisfies each equation. Express your answer in degrees rounded to ONE decimal places.

Example:

a)
$$tan(\theta) = -.7318891$$

Solution:

a) * Quadrant Check:

$$tan(\theta) < 0 \Rightarrow QII, QIIII$$

* Reference Angle:

After Quadrant Check, IGNORE the negative SIGN

$$\theta_R = \tan^{-1}(.7318891)$$

= 36.1999902...

* Solve:

In QII:

$$\theta = (180 - 36.2)^{\circ} = \boxed{143.8^{\circ}}$$

In QIIII:

$$\theta = (360 - 36.2)^{\circ} = 323.8^{\circ}$$

b)
$$\sec(\alpha) = \pm 1.5003024$$

b) * Reciprocal:

$$\cos(\alpha) = \frac{1}{1.5003024}$$
$$= .665322...$$

* Quadrant Check:

QI, QII, QIII, QIIII

* Reference Angle:

$$\alpha_R \approx \cos^{-1}(.6665322)$$

= 48.2000207...

$$\approx 48.2^{\circ}$$

* Solve:

QI:

$$\alpha = 48.2^{\circ}$$

OII:

$$\alpha = (180 - 48.2)^{\circ} = \boxed{131.78^{\circ}}$$

QIII:

$$\alpha = (180 + 48.2)^{\circ} = \boxed{198.2^{\circ}}$$

OIIII:

$$\theta = (360 - 48.2)^{\circ} = 311.8^{\circ}$$

21.
$$\sin(\theta) = -.1993673$$

22.
$$\cot(\beta) = -2.1445066$$

23.
$$\cos(\gamma) = \pm .9857031$$