Section 1

I. Vocabulary

Complete each statement:

1. The values of the SPECIAL ANGLES measured in RADIANS are:

	0°	=	radians	3	
	90°	=	radians	3	
	180°	' =	radians	3	
	270°	° =	radians	3	
	360°	° =	radians	3	
	30°	=	radians	3	
	45°	=	radians	3	
	60°	=	radians	5	
2.	The REFERENCE ANGLE	FAMILIES	for the SPEC	IAL ANGLES	in radians are:
	$30^\circ \rightarrow 30^\circ$, 150° ,	210°,	330° ←	$\rightarrow \pi/_6 \rightarrow 1$,
				,	

50	750,	150,	210,	550		/6 /,,,,	
45° -	→45°,	135°,	225°,	315°	\leftrightarrow	$\pi/_4 \rightarrow \underline{\qquad}, \underline{\qquad},$	
60° -	$\rightarrow 60^{\circ}$,	120°,	240°,	300°	\leftrightarrow	$\pi/_3 \rightarrow \underline{\qquad}, \underline{\qquad},$	

3. Again, the REFERENCE ANGLE FAMILIES for the SPECIAL ANGLES in radians are:

Note: These are so important, they are worth writing out a second time.

4. Yet again, the REFERENCE ANGLE FAMILIES for the SPECIAL ANGLES in radians are:

 $\pi/_{6} \rightarrow \underline{\qquad}, \quad \underline{\qquad}, \quad \underline{\qquad}, \quad \underline{\qquad}, \quad \underline{\qquad}$ $\pi/_4 \rightarrow$ ____, ____, ____, ____ $\pi/_{3} \rightarrow \underline{\qquad}, \quad \underline{\qquad}, \quad \underline{\qquad}, \quad \underline{\qquad}, \quad \underline{\qquad}$

5. The values of the QUANDRANTAL angles in RADIANS are:

6.	Again, the values of the QUANDRANTAL angles in RADIANS are: a) The ZERO ANGLE:
7.	Yey again, the values of the QUANDRANTAL angles in RADIANS are: a) The ZERO ANGLE: b) ONE-QUARTER REVOLUTION: c) A STRAIGHT ANGLE: d) THREE-QUARTER REVOLUTION: e) ONE REVOLUTION: Note: These are so important, they are worth writing out a third time.
8.	A very rough approximation which is good to keep in mind is:
	ONE RADIAN equals approximately a little less than degrees.
	Note: A slightly better value, but <i>still an approximation</i> is degrees.
9.	To CONVERT from either DEGREES to RADIANS or from RADIANS to DEGREES,
	The equation to start with is: $____$
	Note that this equation will typically generate an value.

II. Convert each degree measure to radians. Note that each item is a multiple of a special angle. Express your results as EXACT VALUES in terms of π .

Example:

10.

15.

20.

a) 240° b) 630° c) -225° Solution:

a)
$$240^{\circ}$$
 is $4 \cdot 60^{\circ}$ which is $4 \cdot \left(\frac{\pi}{3}\right)$ which is $\frac{4\pi}{3}$ or $\frac{4\pi}{3}$
b) 630° is $7 \cdot 90^{\circ}$ which is $7 \cdot \left(\frac{\pi}{2}\right)$ which is $\frac{7\pi}{2}$ or $\frac{7\pi}{2}$
c) -225° is $5 \cdot (-45)^{\circ}$ which is $5 \cdot \left(-\frac{\pi}{4}\right)$ which is $\frac{-5\pi}{4}$ or $\frac{-5\pi}{4}$
30° 11. 270° 12. 315° 13. 150° 14. 45°
300° 16. 360° 17. 60° 18. 120° 19. 180°
 -540° 21. -210° 22. 900° 23. -3600° 24. 0°

III. Express each radian measure in degrees. Note that each item is a multiple of a special angle. Example:

a)
$$\frac{\pi}{4}$$
 b) $\frac{7\pi}{3}$ c) $-\frac{5\pi}{2}$

Solution:

a)
$$\frac{\pi}{4}$$
 is a special angle: $\boxed{45^{\circ}}$
b) $\frac{7\pi}{3}$: $\frac{\pi}{3}$ is a special angle (60°) so we have $\frac{7\pi}{3} = 7 \cdot 60^{\circ} = \boxed{420^{\circ}}$
c) $-\frac{5\pi}{2}$: $\frac{\pi}{2}$ is a special angle (90°) so we have $-\frac{5\pi}{2} = -5 \cdot 90^{\circ} = \boxed{-450^{\circ}}$

25.
$$\frac{\pi}{4}$$
 26. $\frac{11\pi}{6}$ 27. $\frac{5\pi}{3}$ 28. $\frac{3\pi}{4}$ 29. $\frac{\pi}{2}$

30.
$$\pi$$
 31. $\frac{11\pi}{3}$ 32. $-\frac{7\pi}{6}$ 33. 2π 34. $\frac{3\pi}{2}$

35. 0 36.
$$\frac{20\pi}{3}$$
 37. -3π 38. $\frac{5\pi}{4}$ 39. $-\frac{\pi}{6}$

IIII. Use the equation $180^\circ = \pi$ to convert each given radian measure to degree measure and each given degree measure to radian measure. Express radian answers rounded to *four* decimal places. Express degree answers rounded to *one* decimal place. When using a value for π in your approximations, use the *continued decimal value* from your calculator – DO NOT use simply 3.14.

Example:

a) 117°	b) $\frac{7\pi}{13}$	c) 284.6°	d) 2.8874
Solution: a) $180^\circ = \pi$ $\Rightarrow \frac{180}{117} = \frac{\pi}{x}$ $\Rightarrow 180x = 117\pi$ $\Rightarrow x = \frac{117\pi}{180}$ = 2.0420352 ≈ 2.0420	b) 180 \Rightarrow \Rightarrow So we $\frac{7\pi}{13}$	$P^{\circ} = \pi$ $\frac{7(180)}{13} = \frac{7\pi}{13}$ $96.9230769 = \frac{7\pi}{13}$ have: $F \approx 96.9^{\circ}$	OR b) alternative solution $180^\circ = \pi$ $\Rightarrow \frac{180}{x} = \frac{\pi}{\left(\frac{7\pi}{13}\right)}$ $\Rightarrow \frac{180}{x} = \left(\frac{\pi}{1}\right) \cdot \left(\frac{13}{7\pi}\right)$ $\Rightarrow \frac{180}{x} = \frac{13}{7}$ $\Rightarrow 13x = 7(180)$ $\Rightarrow x = \frac{7(180)}{13}$ = 96.9230769
c) $180^\circ = \pi$ $\Rightarrow \frac{180}{248.6} = \frac{\pi}{x}$	d)	$180^\circ = \pi$ $\Rightarrow \frac{180}{x} = \frac{\pi}{2.8874}$	

$$\Rightarrow 180x = 248.6\pi \qquad \Rightarrow \pi \cdot x = 2.8874 \cdot (180)$$
$$\Rightarrow x = \frac{248.6\pi}{180} \qquad \Rightarrow x = \frac{2.8874 \cdot (180)}{\pi}$$
$$= 4.9672070... \qquad = 165.4358338...$$
$$\approx \boxed{165.4^{\circ}}$$

 40.
 674° 41.
 -217.5° 42.
 2.6179 43.
 249° 44. $\frac{28\pi}{19}$

 45.
 1.5708 46.
 83° 47.
 -11.2541 48.
 $\frac{6\pi}{23}$ 49.
 23.3258