Trigonometry Chapter 5

Section 2

I.	Vocabulary	
	nplete each statement:	
1.	An TRIGONOMETRIC IDENTITY is a statement involving trig functions which is	for all
valı	es for which the of the trig functions is	
2.	An EXPRESSION consists of and and does not contain an	ı
	sign.	
3.	An EQUATION consists of two which are given as	
4.	a) The verb for an EQUATION is to	
	b) The verb for an EXPRESSION is to	
	c) The verb for an IDENTITY is to	
	Γο an IDENTITY means to demonstrate that the two sides are	·
Cor 6.	Techniques/Suggestions for Verifying Identities hplete each Identity: Watch for fundamental	ı obtain
	simpler side.	
8.	Express all trigonometric functions in terms of and, then	
9.	Watch for the chance to SPLIT THE: $\frac{a \pm b}{c} = {}$ $\pm {}$	
	Watch for the chance to MULTIPLY BY THE:	
	For $(1+\sin(\theta))$ multiply by	
	For $(\tan(\theta)-1)$ multiply by	
	For $(\cos(\theta)+1)$ multiply by etc.	
11.	If you create a COMPLEX FRACTION it.	
	If there are FRACTIONS to ADD, them.	
	If there are FACTORS to MULTIPLY or CANCEL, or t	hem.
	When simplifying, keep in mind the other side of the identity which represents the	
	Ifare of roughly the same COMPLEXITY, you may work on	
	vidually until each side produces the same result.	
16.	YOU MAY NOT WORK ON BOTH SIDES OF THE IDENTITY AT THE SAME TIME.	
10.	Write the above sentence three times:	
	The die 455 to belieflee times.	

III. Verifying Identities:

Example:

Verify each identity:

a)
$$\tan(\theta) + 1 = \sec(\theta) \left(\sin(\theta) + \cos(\theta) \right)$$
 b) $\frac{\cot(t) - \tan(t)}{\sin(t)\cos(t)} = \csc^2(\theta) - \sec^2(\theta)$

c)
$$\frac{1-\cos(x)}{\sin(x)} = \frac{\sin(x)}{1-\cos(x)}$$
 d) $\sec^4(x) - \sec^2(x) = \tan^4(x) + \tan^2(x)$

Solution:

a)
$$\tan(\theta) + 1 = \sec(\theta) (\sin(\theta) + \cos(\theta))$$

Start with Right Hand Side (RHS) as it is the more complicated side:

RHS

$$\sec(\theta) \left(\sin(\theta) + \cos(\theta) \right) = \frac{1}{\cos(\theta)} \left(\sin(\theta) + \cos(\theta) \right)$$
$$= \frac{\sin(\theta)}{\cos(\theta)} + \frac{\cos(\theta)}{\cos(\theta)}$$
$$= \boxed{\tan(\theta) + 1}$$
$$LHS$$

b)
$$\frac{\cot(t) - \tan(t)}{\sin(t)\cos(t)} = \csc^{2}(t) - \sec^{2}(t)$$
Start with the LHS

$$\frac{\cot(t) - \tan(t)}{\sin(t)\cos(t)} = \frac{\cot(t)}{\sin(t)\cos(t)} - \frac{\tan(t)}{\sin(t)\cos(t)}$$

$$= \cot(t) \cdot \frac{1}{\sin(t)\cos(t)} - \tan(t) \cdot \frac{1}{\sin(t)\cos(t)}$$

$$= \frac{\cos(t)}{\sin(t)} \cdot \frac{1}{\sin(t)\cos(t)} - \frac{\sin(t)}{\cos(t)} \cdot \frac{1}{\sin(t)\cos(t)}$$

$$= \frac{\cos(t)}{\sin(t)} \cdot \frac{1}{\sin(t)\cos(t)} - \frac{\sin(t)}{\cos(t)} \cdot \frac{1}{\sin(t)\cos(t)}$$

$$= \frac{\cos(t)}{\sin(t)} \cdot \frac{1}{\sin(t)\cos(t)} - \frac{\sin(t)}{\cos(t)} \cdot \frac{1}{\sin(t)\cos(t)}$$

$$= \frac{1}{\sin^{2}(t)} - \frac{1}{\cos^{2}(t)}$$

$$= \frac{\csc^{2}(t) - \sec^{2}(t)}{RHS}$$

c)
$$\frac{1-\cos(x)}{\sin(x)} = \frac{\sin(x)}{1-\cos(x)}$$

$$\frac{LHS}{\sin(x)} = \frac{\left(1-\cos(x)\right)}{\sin(x)} \cdot \frac{\left(1+\cos(x)\right)}{\left(1+\cos(x)\right)}$$

$$= \frac{\left(1-\cos(x)\right)\left(1+\cos(x)\right)}{\sin(x)\left(1+\cos(x)\right)}$$

$$= \frac{\left(1-\cos^2(x)\right)}{\sin(x)\left(1+\cos(x)\right)}$$

$$= \frac{\sin^2(x)}{\sin(x)\left(1+\cos(x)\right)}$$

$$= \frac{\sin^2(x)}{\sin(x)\left(1+\cos(x)\right)}$$

$$= \frac{\sin(x)}{\sin(x)\left(1+\cos(x)\right)}$$

$$= \frac{\sin(x)}{1+\cos(x)}$$

$$RHS$$

d)
$$\sec^4(x) - \sec^2(x) = \tan^4(x) + \tan^2(x)$$

Both sides are complicated, so work each side INDIVIDUALLY and obtain a common expression. *LHS*

$$\sec^{4}(x) - \sec^{2}(x) = \sec^{2}(x) \left(\sec^{2}(x) - 1\right)$$
$$= \left[\sec^{2}(x) \tan^{2}(x)\right]$$

RHS

$$\tan^{4}(x) + \tan^{2}(x) = \tan^{2}(x) \left(\tan^{2}(x) + 1 \right)$$
$$= \tan^{2}(x) \sec^{2}(x)$$
$$= \sec^{2}(x) \tan^{2}(x)$$

17.
$$\frac{\csc(\theta)}{\cot(\theta)} = \sec(\theta)$$

18.
$$\frac{\sin(x) + \sec(x)}{\tan(x)} = \cos(x) + \csc(x)$$

19.
$$\cos(\theta)\csc(\theta)\tan(\theta) = 1$$

20.
$$\csc^2(\theta) - \cot^2(\theta) = 1$$

$$21. \quad \frac{1-\sin^2(t)}{\cot(t)} = \sin(t)\cos(t)$$

22.
$$\sin^2(\beta)(1+\cot^2(\beta))=1$$

23.
$$\frac{\cos(t)+1}{\tan^2(t)} = \frac{\cos(t)}{\sec(t)-1}$$

24.
$$\frac{1}{1-\sin(\alpha)} + \frac{1}{1+\sin(\alpha)} = 2\sec^2(\alpha)$$

25.
$$\frac{\cot(x)+1}{\cot(x)-1} = \frac{1+\tan(x)}{1-\tan(x)}$$

26.
$$\frac{\csc(x) + \cot(x)}{\tan(x) + \sin(x)} = \cot(x)\csc(x)$$

28.
$$\frac{\tan(\theta)}{1+\cos(\theta)} + \frac{\sin(\theta)}{1-\cos(\theta)} = \cot(\theta) + \sec(\theta)\csc(\theta)$$

29.
$$\sin(x) + \cos(x) = \frac{\sin(x)}{1 - \cot(x)} + \frac{\cos(x)}{1 - \tan(x)}$$