I. SOLVE EACH EQUATION IN THE INTERVAL $[0,2\pi)$.

LEAVE ALL RADICALS IN RADICAL FORM.

NOTE: I INCLUDED A FEW EXTRA ITEMS FOR MORE PRACTICE. THE NUMBER OF ITEMS ON THE EXAM WILL BE SLIGHTLY LESS THAN THE NUMBER OF ITEMS HERE.

1.
$$2\sin(x) + 8 = 7$$

2.
$$\tan(x) - 1 = 0$$

3.
$$4\cos^2(x) + 7 = 10$$

Note for #3::
$$\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}$$

4.
$$(2\cos(x)+1)(\tan(x)-1)=0$$

5.
$$10\cot(x) + 6.2 = 8.1$$

6.
$$3\csc(x) - 10 = -16$$

7.
$$\sin(x) = 0$$

8.
$$2\sin(x)\tan(x) + \tan(x) = 0$$

9.
$$4.3\sin(x) + 2.1 = 3.9$$

10.
$$2\sin^2(x) + 3\sin(x) + 1 = 0$$

11.
$$2\sin(x)\cos(x) + \cos(x) = 0$$

12.
$$\sec^2(x) - \sec(x) - 2 = 0$$

SOLVE #13 & #14 IN THE INTERVAL $(-\infty, \infty)$

13.
$$\sin^2(x) - 5 = -4$$

14.
$$6\cos(x) + 5 = 8$$

Continue solving in the interval $\left[0,2\pi\right)$

15.
$$2\cos(2x) + \sqrt{3} = 0$$

16.
$$\tan(2x) + 1 = 0$$