
THIS IS AN EXAM FROM ABOUT 12 YEARS AGO. THE EXAM FOR OUR CLASSWILL BE OF A SIMILAR 

NATURE.  
 

I.   DETERMINE THE CONVERGENCE OR DIVERGENCE OF EACH SERIES. ALSO: 

(A) STATE THE NAME OF THE TEST YOU USE 

 (B) IF A SERIES IS EITHER GEOMETRIC OR TELESCOPING, AND IT CONVERGES,  

       FIND THE SUM OF THE SERIES. 
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II.   FOR EACH POWER SERIES, DETERMINE THE CENTER, INTERVAL, AND RADIUS OF CONVERGENCE.  
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III.   GIVEN THE POWER SERIES FOR ( ) xf x e=  IS  
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 USE THE FIRST FOUR TERMS OF THE SERIES TO 

ESTIMATE THE VALUE OF THE INTEGRAL.  
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