Lesson 1: Quadratic Equations #### **Quadratic Equation:** | If a·b=0, then either | or | |-----------------------|----| | | | | $2x^2 - 5x - 12 = 0$ | $5x^2 - 20 = 0$ | $4x^2 - 9x + 8 = 3x - 1$ | |----------------------|-----------------|--------------------------| #### Method 2: Square Root Method or Extraction of Roots Method When to Use Square Root Method: In order to use square root method, the equation must be in the format: ____= _____. Notice that if there is no ______ term in the standard form of the quadratic equation or if b = _____, then it is ______ to put in this form. Steps: 1. Put the quadratic equation in the form ______. - 2. Take the ______ of both sides of equation and ______. - 3. When you take _____ of both sides, you MUST take the ____ parts. | $5x^2 = 9$ | $(3x+1)^2 = -9$ | $2(2x+1)^2 + 3 = 11$ | |------------|-----------------|----------------------| #### **Method 3: Completing the Square** **Investigation of Perfect Squares** $$(x+1)^2 =$$ $$(x+2)^2 =$$ $$(x+3)^2 =$$ $$(x+4)^2 = \vdots$$ $$(x+7)^2 = \vdots$$ $$\left(x-8\right)^2 =$$ $$(x _)^2 = x^2 + 12x + _$$ $$(x _)^2 = x^2 - 18x + _$$ # **Method 3: Completing the Square (continued)** | When to use Completing the Square I | work, but I would only use | | |-------------------------------------|---|-------------------------| | this method if I was unable to | or use | · | | The most | equations to use Completing the | Square Method, have a = | | and b is | | | | Steps: 1. From | form, make a = by dividin | g each term by, | | 2. Move the | term to the right side of equation a | and add to each side. | | | the linear term by
The right side will now factor into a | | | 4. Finish Solving by using | me | ethod. | | $x^2 + 10x + 21 = 0$ | $2x^2 + 14x + 4 = 0$ | $3x^2 - 18x + 21 = 0$ | |----------------------|----------------------|-----------------------| #### **Method 4: Quadratic Formula** When to Use Quadratic Formula: Steps: 1. Put the quadratic equation in ______. 2. Find the values of ______, _____, and ______. 3. _____values in quadratic formula, which is: 4. Reduce. | $x^2 + 9x + 11 = 3x - 2$ | $9x^2 - 18x + 7 = 0$ | |--------------------------|----------------------| #### **Choosing the Best Method** In summary, when choosing a method to solve a quadratic equation, follow this order. 1. _____ try to _____ first. 2. If b = _____, then use _____. 3. If a = _____ and b is ______, then it is convenient to use _____. 4. As a ______, which will solve _____ quadratic equations. ## **Lesson 2: Miscellaneous Equations** #### 1. Higher Order Equations - Factoring Steps: 1. Get equations in general form, or set ______ 2. Factor out ______, if possible. 3. Factor the remaining expression depending on the number of terms left a. 2 Terms:_____ b. 3 Terms:_____ c. 4 Terms: 4. Make sure all factors are _______. If they are not ______, then repeat step 3. 5. Set each factor _____ and ____ for the variable. Solve. | $6x^3 + 22x^2 - 8x = 0$ | $5x^4 - 20x^2 = 0$ | $x^4 + 4x^3 - 8x = 32$ | |-------------------------|--------------------|------------------------| 2. Rational Exponents Review from Intermediate Algebra: $a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$ Examples: $$27^{\frac{2}{3}} =$$ $$16^{\frac{3}{4}}$$ Solve: | $x^3 = 8$ | |------------| | | | $x^3 = -8$ | | x = -6 | | | | | ## **Solving Rational Exponent Equations** $$x^{\frac{m}{n}} = k \qquad \qquad (\qquad)^{\frac{m}{n}} = k$$ Steps: 1. Isolate the ______ with the rational exponent. - 2. Raise both sides to the _______of the exponent, or _____. - a. If ______ of exponent or _____ is _____, then put _____ sign on value. - b. If ______ of exponent or _____ is _____, then <u>DO NOT</u> put ____ sign on value. - 3. You MUST ______ your solution(s) and eliminate _____ solutions. $$x^{\frac{3}{2}} = 27$$ $$x^{\frac{2}{3}} = 4$$ More Examples: Solve. | $\left(x^2 - 3x + 3\right)^{\frac{3}{2}} - 1 = 0$ | |---| | (| $$(x+5)^{\frac{2}{3}} = 4$$ ## 3. Solving Equations of the Quadratic Form (using Substitution) The following are examples of the quadratic form. What makes these seemingly different equations similar? $$x^4 - 8x^2 - 9 = 0$$ $$5x^{\frac{2}{3}} + 11x^{\frac{1}{3}} + 2 = 0$$ $$(x+3)^2 + 7(x+3) - 18 = 0$$ 3. Each of these 5 similarities to the right 4. _____ the equations to be in the _____ form. 5. # 3. Solving Equations of the Quadratic Form (using Substitution) continued | Steps: | 1. Identify the equation a | s a | and set equati | on equal to | |--------|---|------------------------|---|-----------------------------| | | Let some variable, equation is important to v | | ginal equation'sve will use it in step 5. | term variable part. This | | | 3. Find thepart. | of the new variab | le, which will always be | e the first term's variable | | | 4 for the new | | _ into the equation to get a | quadratic equation and | | | 5. To solve for original va | riable, | solution(s) into equatio | on from step 2. | | | 6 your sol | ution(s). This is mand | atory, if your equation includ | des | | Solve: | | | |----------------------|--|-----------------------------| | $x^4 - 8x^2 - 9 = 0$ | $5x^{\frac{2}{3}} + 11x^{\frac{1}{3}} + 2 = 0$ | $(x+3)^2 + 7(x+3) - 18 = 0$ | ## **Lesson 3: Absolute Value Equations and Inequalities** Remember, the ______ means distance from _____. Often we say, the absolute value makes the value inside the bars ______. Examples: |15| = |-15| = ## 1. Solving Absolute Equations Solve in your HEAD $$|x| = 3$$ $$|x| = -3$$ Notice that the _____ on the value determines if the equation has ______. Steps: 1. Isolate the ______ in the ______. = - 2. If c is ______, which means _____ or ____then split the absolute value equation into two ____without _____; - or and then ______. - 3. If c is ______, then the answer is ______, because the absolute value of _____ expression can ______ be equal to a negative value. Solve: $$|2x-3| = 11$$ $4|x-2| + 7 = 3$ Solve: | 7 3x +2=16 | 2 3x-1 +7=7 | | |------------|-------------|--| | | | | | | | | | | | | | | | | #### 2. Interval Notation | Interval notation represen | ts the set of ı | numbers between | two | If you would | |----------------------------|------------------------|-----------------|-------------------------------|---------------| | like to | the endpoint, then use | a or | symbol. If you would NOT li | ke to include | | the endpoint, then use a | or symbol. | We always write | interval notation as follows: | | | Inequality Notation | Graph | Interval Notation | |---------------------|---------------------|-------------------| | x < a | ← | | | x > a | ← → a | | | $x \le a$ | < → a | | | $x \ge a$ | <> | | | a < x < b | | | | $a \le x \le b$ | d a b b | | | $a < x \le b$ | < | | | $a \le x < b$ | < | | | All Real Numbers | ← | | | No Solution | ← → | | #### 3. Solving Linear Inequalities Remember: _____ the inequality sign when you multiply or divide by a _____ or if you _____ the equation. | $-4x+3 \le 27$ | -2 < x | |----------------|--------| | | | | | | | | | #### 4. Solving Inequalities with Absolute Value When solving inequalities with _______, first ______ the absolute value expression. $\Big| < c \Big|$ or $\Big| > c$ Next, identify if the _____ on the opposite side of the absolute value is _____, or A. Let's explore when c is ______. | | T | | | |----------------|--------------------|------------------------|----------------------| | Inequality w/ | Graph of Solutions | Solution in Inequality | Solution in Interval | | Absolute Value | | form | Notation | | x < 2 | < | • | | | x > 2 | < | • | | Let x be algebraic expression and let c be a positive number. $$\begin{aligned} & |f||x| < c \text{ , then.} \\ & |f||x| > c \text{ , then} \end{aligned}$$ OR ## **And Examples:** #### Or Examples: | 3x-2 < 8 | $ 3x-2 \ge 8$ | |------------------------------------|------------------------------| | | | | | | | | | | $\left \frac{x-2}{3} \right < 4$ | $\left 1-2x\right -4\geq -1$ | | | | | | | | | | | ← | ← | B. Let's explore when c is ______. | Inequality w/
Absolute Value | Graph of Solutions | | olution in Interval
otation | |---------------------------------|--------------------|-------------|--------------------------------| | x < -2 | | | | | | | | | | x > -2 | | | | | | < | → | | | | | | | Let x be algebraic expression and <u>let c be a negative number</u>. If |x| < c, then the solution is ______. If |x| > c, then the solution is ______. Solve | $ 3x-2 \le -8$ | $ 3x-2 \ge -8$ | 4 7-x +9<5 | |-----------------|-----------------|------------| | | | | | | | | | | | | | | | | **Lesson 4: Basics of Functions and Their Graphs** A relation is a _____ The set of all ____elements in a relation is called the _____ and the set of all _____ elements a relations is called the _____. The following is a relation. **Color of their Shirt** Student April Bob Carlos Dion Eva Let us define the following sets as: $A = \{$ $B = \{$ The domain of A is: A_D The range of A is: A_R The domain of B is : B_D The range of B is: B_R A ______ is a _____ where each element in the _____ corresponds to ______ element in the _____. A В } } Functions can be expressed several ways. Functions as _____ Functions as Functions as _____ **Functions as Sets** Determine if the following relations are function? Find domain and Range $J = \{(4,5), (6,8), (8,8), (6,8)\}$ $I = \{(10,8), (6,4), (2,0), (-2,-4)\} \mid K = \{(3,4), (3,5), (8,9), (1,0)\}$ Is the relation a Function? _____ Is the relation a Function? _____ Is the relation a Function? _____ Domain: Domain: Domain: Range:_____ Range:_____ **Functions as Equations** is another way of writing an _____. Function notation defines the ______, or _____ of the function by using any value of the ______ y with _____ y with _____ pronounced ______. y = 3x + 1To find the value of a function at a given ______, we ______, the _____ or ____. Let f(x) = 2x - 3Find f(-x) =Find f(5) =Find f(x+1)= | Find $g(-r) =$ | Find $g(x+3) =$ | |----------------|-----------------| | | S(x+3) | Find $g(-x) =$ | Let $h(x) = \frac{x^2}{x-1}$ | Find $h(4) =$ | Find $h(-x) =$ | |---------------|----------------| Find $h(4) =$ | ## **Functions as Graphs** | The | _ of a | _ is the picture that represents all the | _ or | |-----|--------------------------|--|------| | | for the equation/functio | n. | | Remember: If every value in the _____ corresponds to only ____ value in the _____, then the graph is a _____ . If ___ value in the domain corresponds to more than _____ value in the _____, then the graph is not a function. To determine if a graph is a function, we will use the _______, which states that if a ______ intersects the graph at ______ than one point, then the graph is _____ a function. Are these relations also functions? #### **Functions as Graphs: Finding Values** We can also find ______ of a function by looking at the _____. To find a function value, go to the given ______ on the ____ axis. Your _____ is the ____coordinate at that input. Find f(-2) =_____ Find f(-1) =_____ Find f(0) =_____ Find $f(1) = _____$ Find f(2) =_____ - Find f(-3) =_____ - Find f(-2) =_____ - Find f(0) =_____ - Find $f(2) = _____$ - Find f(3) =_____ #### Functions as Graphs: X and Y Intercepts are where the graph ______ the _____. Algebraically, you find it by setting _____ and solving for ____. The _____ is where the graph _____ the ____. Algebraically, you find it by setting _____ and solving for ____. Find the x and y intercepts of the following graphs: X Intercept(s):_____ X Intercept(s):____ X Intercept(s):_____ Y Intercept: _____ Y Intercept: _____ Y Intercept: _____ #### **Functions as Graph: Domain and Range** We will write the domain and range using _____ Remember: The ______ of a relation is all the _____ or ___ values that relation includes. In order to find the ______of the graph, look at the end points of the relation graphed from_____ to _____. The ______ of a relation is all the _____ or ___ values that relation includes. In order to find the ______of the graph, look at the end points of the relation graphed from_____ to _____ \rightarrow x Domain: Domain: Domain: Range:___ Range:____ Range: у \rightarrow x Domain:_____ Domain:_____ Domain: Range:____ Range:____ Range: #### **Functions as Graphs Summary** Zeros: The value of $\underline{\hspace{1cm}}$ when $f(x) = \underline{\hspace{1cm}}$, or the $\underline{\hspace{1cm}}$ coordinate of the $\underline{\hspace{1cm}}$ intercept. 1. Domain _____ Range _____ X Intercept(s) Y intercept _____ Zeros _____ Find f(2) = _____ Find f(3) = _____ 3 Domain _____ Range _____ X Intercept(s) Y intercept _____ Zeros _____ Find f(-1) = _____ Find f(0) =_____ 2. Domain _____ Range _____ X Intercept(s) _____ Y intercept _____ Zeros _____ Find f(-3) = _____ Find f(-6) =_____ 4. Domain _____ Range _____ X Intercept(s) _____ Y intercept _____ Zeros _____ Find f(-2) = _____ Find f(-5) = _____ ## **Lesson 5: More on Basics of Functions and their Graphs** **Even and Odd functions and their Symmetry** | ТҮРЕ | GRAPH | SYMMETRY | ALGEBRAIC
DETERMINATION | |------|-------|----------|--| | | | | If $f(-x) = \underline{\hspace{1cm}}$ for all x in the domain, then the functions | | | | | is | | | | | If $f(-x) = \underline{\hspace{1cm}}$ for all x in the domain, then the functions is | | | | | | Algebraically determine if the following functions are even, odd or neither. $$f(x) = 3x^2 + 1$$ $$f(x) = 4x^3 - x$$ $$f(x) = x^5 + 1$$ Use possible symmetry to determine whether the following graphs are even, odd or neither. | Piecewise Defined Func Aequatio | tions: function is a n over a specified | that is defined by | | | |--|--|--------------------------|--|--| | Example: For a Cell Phone F \$0.40 per additional minute. | Plan, you will pay \$20 for the fi | rst 60 minutes, and then | | | | $C(t) = \begin{cases} $ | | | | | | Find C(30)= | Find C(| 120)= | | | | | | | | | | | a piecewise defined function you so value belongs in. Then you s | | | | | Example: | · | | | | | - | 0 | | | | | Let $f(x) = \begin{cases} 6x-1 & \text{if } x < 0 \\ 7x+3 & \text{if } x \ge 0 \end{cases}$
Find $f(-3) = $ Find $f(0) = $ Find $f(4) = $ | | | | | | Find f(-3)= | Find f(0)= | Find f(4)= | Let $g(x) = \begin{cases} x^2 - 5 & \text{if } x \neq 0 \\ 4 & \text{if } x = 0 \end{cases}$ | | | | | | Find g(-3)= | Find g(0)= | Find g(3)= | | | | | | | | | | | | | | | | | 1 | 1 | | | #### **Graphing Piecewise Functions** To ______ a piecewise defined function, choose _____ values for _____, including the ______ of each domain, whether or not that the endpoint is ______ in the domain. Label each endpoint as _____ or not. Sketch the _____ of the function. Remember our Cell Phone Plan Function: Graph the following piecewise defined functions. $$f(x) = \begin{cases} 1+x & if \ x < 0 \\ x^2 & if \ x \ge 0 \end{cases}$$ $$f(x) = \begin{cases} x+3 & if -3 \le x < 0 \\ 2 & if \ x = 0 \\ \sqrt{x} & if \ x > 0 \end{cases}$$ $$f(x) = \begin{cases} |x| & if \quad x \neq 0 \\ 1 & if \quad x = 0 \end{cases}$$ #### **Difference Quotient** The difference quotient is used to understand the rate at which functions change, which is covered heavily in future courses. For this College Algebra course, we will need to understand how to evaluate this ratio. Definition: $\frac{f(x+h)-f(x)}{h}$ where $h \neq 0$ **Examples: Find the difference quotient for the following functions** $$f(x) = 6x + 1$$ $$f\left(x\right) = -2x^2 + x + 5$$ $$f(x) = \frac{1}{2x}$$