Lesson 1: Quadratic Equations

Quadratic Equation:

The quadratic equation in \qquad form is \qquad .

In this section, we will review 4 methods of \qquad quadratic equations, and when it is most
\qquad to use each method.

1. \qquad
2. \qquad
\qquad
3. \qquad

Method 1: Factoring

When to Use Factoring: \qquad
Steps: 1. Put the quadratic equation in \qquad .
2. \qquad the expression.
3. Use \qquad Property to Solve.

Zero Product Property:

If $a \cdot b=0$, then either \qquad or \qquad .

| $2 x^{2}-5 x-12=0$ | $5 x^{2}-20=0$ | $4 x^{2}-9 x+8=3 x-1$ |
| :--- | :--- | :--- | :--- |

Method 2: Square Root Method or Extraction of Roots Method
When to Use Square Root Method: In order to use square root method, the equation must be in the format:
\qquad $=$ \qquad .

Notice that if there is no \qquad term in the standard form of the quadratic equation or if $b=$
\qquad then it is \qquad to put in this form.

Steps: 1. Put the quadratic equation in the form \qquad .
2. Take the \qquad of both sides of equation and \qquad .
3. When you take \qquad of both sides, you MUST take the \qquad parts.

$5 x^{2}=9$	$(3 x+1)^{2}=-9$	$2(2 x+1)^{2}+3=11$

Method 3: Completing the Square

Investigation of Perfect Squares
$(x+1)^{2}=$
$(x+2)^{2}=$
$(x+3)^{2}=$
$(x+4)^{2}=$
\vdots
$(x+7)^{2}=$
\vdots
$(x-8)^{2}=$
$\left(x _\right)^{2}=x^{2}+12 x+$ \qquad
$\left(x _\right)^{2}=x^{2}-18 x+$

Method 3: Completing the Square (continued)

When to use Completing the Square Method: This method will \qquad work, but I would only use this method if I was unable to \qquad or use \qquad -

The most \qquad equations to use Completing the Square Method, have a = \qquad and b is \qquad .

Steps: 1. From \qquad form, make $\mathrm{a}=$ \qquad by dividing each term by \qquad ,
2. Move the \qquad term to the right side of equation and add \qquad to each side.
3. Complete the Square by \qquad the linear term by \qquad and \qquad .

Put this value in the blanks. The right side will now factor into a \qquad .
4. Finish Solving by using \qquad method.

$x^{2}+10 x+21=0$	$2 x^{2}+14 x+4=0$	$3 x^{2}-18 x+21=0$

Method 4: Quadratic Formula

When to Use Quadratic Formula: \qquad

Steps: 1. Put the quadratic equation in \qquad .
2. Find the values of \qquad , \qquad , and \qquad .
3. \qquad values in quadratic formula, which is:
4. Reduce.

| $x^{2}+9 x+11=3 x-2$ | $9 x^{2}-18 x+7=0$ |
| :---: | :--- | :--- |

Choosing the Best Method

In summary, when choosing a method to solve a quadratic equation, follow this order.

1. \qquad try to \qquad first.
2. If $b=$ \qquad or if \qquad , then use \qquad .
3. If $\mathrm{a}=$ \qquad and b is \qquad then it is convenient to use \qquad .
4. As a \qquad resort, use \qquad which will solve
\qquad quadratic equations.

Lesson 2: Miscellaneous Equations

1. Higher Order Equations - Factoring

Steps: 1. Get equations in general form, or set
2. Factor out \qquad , if possible.
3. Factor the remaining expression depending on the number of terms left
a. 2 Terms: \qquad
b. 3 Terms: \qquad
c. 4 Terms: \qquad
4. Make sure all factors are \qquad . If they are not \qquad , then repeat step 3.
5. Set each factor \qquad and \qquad for the variable.

Solve.

$6 x^{3}+22 x^{2}-8 x=0$	$5 x^{4}-20 x^{2}=0$	$x^{4}+4 x^{3}-8 x=32$

2. Rational Exponents

$$
\text { Review from Intermediate Algebra: } \quad a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

Examples:
$27^{\frac{2}{3}}=$
$16^{\frac{3}{4}}=$

Solve:

$x^{2}=9$	$x^{3}=8$
$x^{2}=-9$	$x^{3}=-8$

Solving Rational Exponent Equations $\quad x^{\frac{m}{n}}=k \quad()^{\frac{m}{n}}=k$
Steps: 1. Isolate the \qquad with the rational exponent.
2. Raise both sides to the \qquad of the exponent, or \qquad .
a. If \qquad
b. If \qquad
3. You MUST \qquad of exponent or \qquad is \qquad , then put \qquad sign on value. of exponent or \qquad is \qquad , then DO NOT put \qquad sign on value. your solution(s) and eliminate \qquad solutions.

$\left(x^{2}-3 x+3\right)^{\frac{3}{2}}-1=0$	$(x+5)^{\frac{2}{3}}=4$

3. Solving Equations of the Quadratic Form (using Substitution)

The following are examples of the quadratic form. What makes these seemingly different equations similar?
$x^{4}-8 x^{2}-9=0$
$5 x^{\frac{2}{3}}+11 x^{\frac{1}{3}}+2=0$
$(x+3)^{2}+7(x+3)-18=0$

Each of these 5 similarities to the right
\qquad the equations to be
in the \qquad form.
5.

3. Solving Equations of the Quadratic Form (using Substitution) continued

Steps: 1. Identify the equation as a \qquad and set equation equal to \qquad .
2. Let some variable, \qquad be equal to the original equation's \qquad term variable part. This equation is important to write down, because we will use it in step 5 .
3. Find the \qquad of the new variable \qquad , which will always be the first term's variable part.
4. \qquad the new variable \qquad into the equation to get a quadratic equation and
\qquad for the new variable, \qquad _.
5. To solve for original variable, \qquad solution(s) into equation from step 2.
6. \qquad your solution(s). This is mandatory, if your equation includes \qquad exponents.

Solve:

$x^{4}-8 x^{2}-9=0$	$5 x^{\frac{2}{3}}+11 x^{\frac{1}{3}}+2=0$	$(x+3)^{2}+7(x+3)-18=0$

Lesson 3: Absolute Value Equations and Inequalities
Remember, the \qquad means distance from \qquad . Often we say, the absolute value
makes the value inside the bars \qquad . Examples: $|15|=$

$$
|-15|=
$$

1. Solving Absolute Equations

Solve in your HEAD

$\|x\|=3$	$\|x\|=-3$

Notice that the \qquad on the value determines if the equation has \qquad .

Steps:

1. Isolate the \qquad in the \qquad .

$$
\mid=c
$$

2. If c is	3. If c is \qquad , then
means \qquad or \qquad then split	the answer is
the absolute value equation into two	because the absolute value of
without	expression can \qquad be equal to a
or	negative value.
and then	

Solve:

$\|2 x-3\|=11$	$4\|x-2\|+7=3$

Solve:

$$
7|3 x|+2=16 \quad|2| 3 x-1 \mid+7=7
$$

2. Interval Notation

Interval notation represents the set of \qquad numbers between two \qquad . If you would like to \qquad the endpoint, then use a \qquad or \qquad symbol. If you would NOT like to include the endpoint, then use a \qquad or \qquad symbol. We always write interval notation as follows:

Inequality Notation	Graph	Interval Notation
$x<a$		
$x>a$		
$x \leq a$		
$x \geq a$		
$a<x<b$		
$a \leq x \leq b$		
$a<x \leq b$		
$a \leq x<b$		
All Real Numbers	\longleftrightarrow	
No Solution	\longleftrightarrow	

3. Solving Linear Inequalities

Remember: \qquad the inequality sign when you multiply or divide by a
\qquad or if you \qquad the equation.

$-4 x+3 \leq 27$

$$
-2<x
$$

4. Solving Inequalities with Absolute Value

When solving inequalities with \qquad first \qquad the absolute value expression.
 or on the opposite side of the absolute value is \qquad , or
Next, identify if the \qquad
\qquad .
A. Let's explore when c is \qquad .

Inequality w/ Absolute Value	Graph of Solutions	Solution in Inequality form	Solution in Interval Notation
$\|x\|<2$	\longleftrightarrow		
$\|x\|>2$	\longleftrightarrow		

Let x be algebraic expression and let c be a positive number.
\square

And Examples:

Or Examples:

$|x| \leq 3$

$$
|x|>4
$$

B. Let's explore when c is

Inequality w/ Absolute Value	Graph of Solutions	Solution in Interval Notation
$\|x\|<-2$	\longleftrightarrow	
$\|x\|>-2$	\longleftrightarrow	

Let x be algebraic expression and let c be a negative number.
If $|x|<c$, then the solution is \qquad .

If $|x|>c$, then the solution is \qquad

Solve

$\|3 x-2\| \leq-8$	$\|3 x-2\| \geq-8$	$4\|7-x\|+9<5$

Lesson 4: Basics of Functions and Their Graphs

A relation is a \qquad —.

The set of all \qquad elements in a relation is called the \qquad and
the set of all \qquad elements a relations is called the \qquad . The following is a relation.

Student	Color of their Shirt
April	
Bob	
Carlos	
Dion	
Eva	

Let us define the following sets as:
$A=\{$
$B=\{$

The domain of A is : A_{D}
The range of A is: A_{R}
The domain of B is : B_{D}
The range of B is: B_{R}

A \qquad is a \qquad where each element in the \qquad corresponds
to \qquad element in the \qquad .

A

B

Functions can be expressed several ways.

Functions as__	Functions as__	Functions as

Functions as Sets

Determine if the following relations are function? Find domain and Range

$I=\{(10,8),(6,4),(2,0),(-2,-4)\}$	$K=\{(3,4),(3,5),(8,9),(1,0)\}$	$J=\{(4,5),(6,8),(8,8),(6,8)\}$
Is the relation a Function?	Is the relation a Function?	Is the relation a Function?
Domain:	Domain:	Domain:
Range:	Range:	Range:

Functions as Equations

 is another way of writing an \qquad .Function notation defines the \qquad , or \qquad of the function by using any value of the \qquad , (x). If an equation is a function, then we \qquad y with \qquad pronounced \qquad .

$$
y=3 x+1
$$

\qquad
To find the value of a function at a given \qquad we \qquad the \qquad into the equation and \qquad or \qquad .

Let $f(x)=2 x-3$

Find $f(5)=$	Find $f(-x)=$	Find $f(x+1)=$

Let $g(x)=x^{2}+3 x+5$

Find $g(-2)=$	Find $g(-x)=$	Find $g(x+3)=$

Let $h(x)=\frac{x^{2}}{x-1}$

Find $h(-1)=$	FInd $h(4)=$	Find $h(-x)=$

Functions as Graphs

The \qquad of a \qquad is the picture that represents all the \qquad or for the equation/function.

Remember: If every value in the \qquad corresponds to only \qquad value in the
\qquad , then the graph is a \qquad . If \qquad value in the domain corresponds to more than \qquad value in the \qquad , then the graph is not a function.

To determine if a graph is a function, we will use the \qquad , which states that if a \qquad intersects the graph at \qquad than one point, then the graph is \qquad a function.

Are these relations also functions?

Functions as Graphs: Finding Values
We can also find \qquad of a function by looking at the \qquad .
To find a function value, go to the given \qquad on the \qquad axis. Your \qquad is the \qquad coordinate at that input.

Find $f(-2)=$ \qquad
Find $f(-1)=$ \qquad
Find $f(0)=$ \qquad
Find $f(1)=$ \qquad
Find $f(2)=$ \qquad

Find $f(-3)=$ \qquad
Find $f(-2)=$ \qquad
Find $f(0)=$ \qquad
Find $f(2)=$ \qquad
Find $f(3)=$ \qquad

Functions as Graphs: X and Y Intercepts

Algebraically, you find it by setting are where the graph \qquad the \qquad .
\qquad and solving for \qquad .

The \qquad is where the graph \qquad the \qquad . Algebraically, you find it by setting \qquad and solving for \qquad _.

Find the x and y intercepts of the following graphs:

X Intercept(s): \qquad
Y Intercept: \qquad

X Intercept(s): \qquad
Y Intercept: \qquad

X Intercept(s): \qquad
Y Intercept: \qquad

Functions as Graph: Domain and Range
We will write the domain and range using \qquad .

Remember: The \qquad of a relation is all the \qquad or \qquad values that relation includes.

In order to find the \qquad of the graph, look at the end points of the relation graphed from \qquad to \qquad .

The \qquad of a relation is all the \qquad or \qquad values that relation includes.

In order to find the \qquad of the graph, look at the end points of the relation graphed from \qquad to \qquad .

Domain: \qquad
Range: \qquad

Domain: \qquad
Range: \qquad

Domain: \qquad Range: \qquad

Domain: \qquad
Range: \qquad

Domain: \qquad Range: \qquad

Domain: \qquad
Range: \qquad

Functions as Graphs Summary

Zeros: The value of \qquad when $f(x)=$ \qquad , or the \qquad coordinate of the \qquad intercept.
1.

Domain \qquad
Range \qquad
X Intercept(s) \qquad
Y intercept \qquad
Zeros \qquad
Find $f(2)=$ \qquad
Find $f(3)=$ \qquad

3

Domain \qquad
Range \qquad
X Intercept(s) \qquad
Y intercept \qquad
Zeros \qquad
Find $f(-1)=$ \qquad
Find $f(0)=$ \qquad
2.

Domain \qquad
Range \qquad
X Intercept(s) \qquad
Y intercept \qquad
Zeros \qquad
Find $f(-3)=$ \qquad
Find $f(-6)=$ \qquad
4.

Domain \qquad
Range \qquad
X Intercept(s) \qquad
Y intercept \qquad
Zeros \qquad
Find $f(-2)=$ \qquad
Find $f(-5)=$ \qquad

Lesson 5: More on Basics of Functions and their Graphs
Even and Odd functions and their Symmetry

TYPE	GRAPH	SYMMETRY	ALGEBRAIC DETERMINATION
			If $\mathrm{f}(-\mathrm{x})=\square$ the domain, then the functions is f__ for all x in
			If $\mathrm{f}(-\mathrm{x})=\ldots$ the domain, then the functions is

Algebraically determine if the following functions are even, odd or neither.

$f(x)=3 x^{2}+1$	$f(x)=4 x^{3}-x$	$f(x)=x^{5}+1$

Use possible symmetry to determine whether the following graphs are even, odd or neither.

A function is a \qquad that is defined by more than \qquad equation over a specified \qquad .

Example: For a Cell Phone Plan, you will pay $\$ 20$ for the first 60 minutes, and then $\$ 0.40$ per additional minute.
$C(t)=\{$
Find $\mathrm{C}(30)=$ Find $C(120)=$

To find a function value with a piecewise defined function you must look for the the function value belongs in. Then you substitute that value in to the corresponding \qquad _.

Example:
Let $f(x)= \begin{cases}6 x-1 & \text { if } x<0 \\ 7 x+3 & \text { if } x \geq 0\end{cases}$

Find $f(-3)=$	Find $f(0)=$	Find $f(4)=$

Let $g(x)=\left\{\begin{array}{cc}x^{2}-5 & \text { if } x \neq 0 \\ 4 & \text { if } x=0\end{array}\right.$

Find $g(-3)=$	Find $g(0)=$	Find $g(3)=$

To \qquad a piecewise defined function, choose \qquad values for
\qquad , including the \qquad of each domain, whether or not that the endpoint is \qquad in the domain. Label each endpoint as
\qquad or not. Sketch the \qquad of the function.

Remember our Cell Phone Plan Function:

$$
C(t)=\left\{\begin{array}{lr}
20 & \text { if } 0 \leq t \leq 60 \\
20+.40(t-60) & \text { if } t>60
\end{array}\right.
$$

Graph the following piecewise defined functions.

$$
f(x)= \begin{cases}1+x & \text { if } x<0 \\ x^{2} & \text { if } x \geq 0\end{cases}
$$

$$
f(x)= \begin{cases}x+3 & \text { if }-3 \leq x<0 \\ 2 & \text { if } x=0 \\ \sqrt{x} & \text { if } x>0\end{cases}
$$

$$
f(x)=\left\{\begin{array}{lll}
|x| & \text { if } & x \neq 0 \\
1 & \text { if } & x=0
\end{array}\right.
$$

Difference Quotient

The difference quotient is used to understand the rate at which functions change, which is covered heavily in future courses. For this College Algebra course, we will need to understand how to evaluate this ratio.

Definition: $\frac{f(x+h)-f(x)}{h} \quad$ where $h \neq 0$
Examples: Find the difference quotient for the following functions

| $f(x)=6 x+1$ |
| :--- | :--- |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| $(x)=-2 x^{2}+x+5$ |

