Lesson 6: Linear Functions and their Slope

A linear function is represented by a \qquad line when graph, and represented in an
\qquad where the variables have no whole number exponent higher than \qquad .

Forms of a Linear Equation

Name	Equation	When is it useful to use this form?
Standard Form		
Slope-Intercept Form		
Point Slope Form		

Slope - Steepness of a Line

Formula:

Type of Slope

Examples:

Find the slope for the following pairs of points. Then plot the points and draw the linear function containing the two points

Special Cases: Use HOY VUX
H

V

U

X

Graph using a Point and a Slope

1. Plot the \qquad .
2. Use \qquad to find another point. Think numerator $=$ \qquad and denominator $=$
\qquad .
3. Connect points with a \qquad line using \qquad at the ends.

Writing Equations of Linear Functions:

Given Information	Steps:
A Point and a Slope	1. Plug information into \qquad form, when possible. 2. Solve for \qquad to answer in \qquad form.
Special Cases where slope is undefined or 0 Use HOY VUX	1. If slope is \qquad then the line is \qquad and the equation is \qquad -. 2. If slope is \qquad , then the line is \qquad and the equation is
2 Points	1. Use 2 points to solve for \qquad 2. Plug \qquad and one of the \qquad into point-slope form. 3. Solve for \qquad to answer in \qquad form.

Write the following equations:

Slope of 6, and passes through $(-2,5)$	Slope of $-\frac{3}{5}$, and passes through $(10,-4)$
Slope of 0, and passing through $(3,1)$	Undefined Slope, and passing through (3,1)
Line passing through the points $(-3,1)$ and $(2,4)$	Line passing through the points $(3,5)$ and $(8,15)$

Parallel Slopes

Writing Equations using Parallel and Perpendicular Slopes

1. Put the given equation into \qquad form to find \qquad .
2. If the lines are parallel, then slope of the new line is the \qquad If the lines are perpendicular, then slope the new line is \qquad _.
3. Plug this new \qquad and the given point into \qquad form.
4. Solve for \qquad to get answer in \qquad form.

Find the equation of a line passing through $(-2,-7)$ and parallel to the line $10 x+2 y=7$.

Find the equation of a line passing through ($-4,2$) and perpendicular to the line $y=\frac{1}{3} x+7$.

Special Cases: Use HOY VUX

Find equation passing through $(-2,6)$ perpendicular to $x=-4$.

Find equation passing through $(4,8)$ perpendicular to $y=9$.

Find equation passing through $(-1,5)$ parallel to $x=3$.

Find equation passing through $(11,-3)$ parallel to $\mathrm{y}=-7$.

Graphing Linear Functions

Form	Steps:
Slope Intercept Form	1. Identify the \qquad and \qquad 2. Plot the \qquad point. 3. Find the next point by using \qquad or \qquad over \qquad 4. Connect points using \qquad .
Standard Form	Translate the equation into \qquad form and repeat above steps OR 1. Find and plot the \qquad by setting $y=$ \qquad . $($, 2. Find and plot the \qquad by setting $x=$ \qquad 3. Connect points using \qquad .

$$
6 x-9 y=18
$$

x-int: (0) y-int: $(0, \quad)$

Graph $y=\frac{3}{4} x-3$

$4 x+y=6$
x-int: (, 0$) y$-int: $(0, \quad)$

Lesson 7: Transformation of Graphs

Function	Graph	Table/Key Points
Basic Linear Function: $\mathrm{f}(\mathrm{x})=\mathrm{x}$		Vertex: $(0,0)$ Key Points: $(-1,-1)$ and $(1,1)$
Basic Quadratic function: $f(x)=x^{2}$		Vertex: $(0,0)$ Key Points: $(-1,1)$ and $(1,1)$
Basic Root Function: $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}=\mathrm{x}^{\frac{1}{2}}$		Vertex: $(0,0)$ Key Points: $(1,1)$

Function	Graph	Table/Key Points
Basic Absolute Value function: $\mathrm{f}(\mathrm{x})=\|\mathrm{x}\|$		Vertex: $(0,0)$ Key Points: $(-1,1)$ and (1,1)
Basic Cubic Function: $f(x)=x^{3}$		Vertex: $(0,0)$ Key Points: $(-1,1)$ and (1,1)
Basic Cube Root Function: $\mathrm{f}(\mathrm{x})=\sqrt[3]{\mathrm{x}}=\mathrm{x}^{\frac{1}{3}}$		Vertex: $(0,0)$ Key Points: $(-1,1)$ and $(1,1)$

Vertical Shifting

Let $f(x)$ be a function, and k be a number.

$y=f(x)+k$	When you___ k to the ___ , the graph shifts ___
$y=f(x)-k$	When you___ k to the ___ , the graph shifts ___

Examples:

$$
f(x)=|x|
$$

Graph $g(x)=|x|+2$
$h(x)=|x|-3$

$$
f(x)=x^{2}
$$

Graph $\quad g(x)=x^{2}+3$

$$
h(x)=x^{2}-5
$$

Horizontal Shifting

Let $f(x)$ be a function, and h be a number.

$y=f(x+h)$	When you___ h to the ___ , the graph shifts ___
$y=f(x-h)$	When you___ h to the ___ , the graph shifts ___

Examples

Graph $g(x)=\sqrt{x+1}$

$$
h(x)=\sqrt{x-3}
$$

$$
\text { Graph } \begin{aligned}
& f(x)=x^{3} \\
& g(x)=(x+3)^{3} \\
& \\
& h(x)=(x-2)^{3}+4
\end{aligned}
$$

Vertical Stretch and Compress $\quad y=a \cdot f(x)$
When multiplying the function by a \qquad value, the graph gets vertically. To graph, we will \qquad the y value of the key points by the value \qquad .

When multiplying the function by a \qquad value, the graph gets \qquad .

Examples:

$$
f(x)=\sqrt[3]{x}
$$

Graph $g(x)=2 \sqrt[3]{x}$
$h(x)=-\sqrt[3]{x}$

Steps to Graph with more than one transformation: $y=a(x-h)^{2}+k$

1. Determine the \qquad of the graph.
2. Find the horizontal shift (___), and vertical shift (\qquad), to find the translated \qquad ().
3. Use the stretch and compress (\qquad) to find new key points in relation to your new vertex.
4. Connect all points. Make sure that your graph looks like the \qquad .
5. $f(x)=-2(x-3)^{2}-4$

Basic Shape:

Horizontal Shift: \qquad
Vertical Shift: \qquad
Vertex: \qquad
Compress/Stretch: \qquad

2. $f(x)=\frac{1}{2} \sqrt{x+5}+2$	Basic Shape: Horizontal Shift: \qquad Vertical Shift: \qquad Vertex: \qquad Compress/Stretch: \qquad
3. $f(x)=-(x-1)^{3}+5$	Basic Shape: Horizontal Shift: \qquad Vertical Shift: \qquad Vertex: \qquad Compress/Stretch: \qquad
4. $f(x)=\sqrt[3]{x+3}-1$	Basic Shape: Horizontal Shift: \qquad Vertical Shift: \qquad Vertex: \qquad Compress/Stretch: \qquad

Lesson 8: Operations of Functions

Finding Domain from an Equation

Domain: Remember that the domain of a function is the set of all \qquad .

When finding the domain of a function, begin by assuming that the domain is \qquad .
Then determine if there is any place where the function is not \qquad and
\qquad those values from the domain.

The 2 types of functions who have excluded values are:

1. Rational Functions because \qquad . To identify these
"bad" values that DO NOT belong to the domain, set the \qquad $\neq 0$ and solve. Write your domain in \qquad notation without these excluded values.
2. EVEN root function because \qquad . To identify the qualifying values that DO belong to the domain, set the expression \qquad the radical (called the radicand) ≥ 0. Write your domain in \qquad notation.

Find Domain:

$f(x)=x^{2}-7 x$	$g(x)=\frac{3 x+2}{x^{2}-2 x-3}$	$h(x)=\frac{x-4}{x^{3}+9 x^{2}+8 x}$
$h(x)=\sqrt{3 x+2}$		

Combination of Functions

Given 2 functions $f(x)$ and $g(x)$ we can determine:

1. Sum: $(f+g)(x)=$ \qquad . This operation makes a \qquad function by
\qquad the two functions.
2. Difference: $(f-g)(x)=$ \qquad . This operation makes a \qquad function by
\qquad the two functions.
3. Product: $(f \cdot g)(x)=$ \qquad . This operation makes a \qquad function by
\qquad the two functions.
4. Quotient: $\left(\frac{f}{g}\right)(x)=$ \qquad . This operation makes a \qquad function by
\qquad the two functions.

The domain of the new "combined" functions will be the intersection, or all values in \qquad , of the domains of $f(x)$ and $g(x)$, excluding any new "bad" values created by combining the functions. This usually occurs with the \qquad of two functions.

Given: $f(x)=x^{2}+2$ and $g(x)=x-7$. Find the new combined functions and their new domain.

$(f+g)(x)=$	$(f-g)(x)=$
$(f \cdot g)(x)=$	$\left(\frac{f}{g}\right)(x)=$

Given $f(x)=\sqrt{x+2}$ and $g(x)=x-4$. Find the new combined functions and their new domain.

$(f+g)(x)=$	$(f-g)(x)=$
$(f \cdot g)(x)=$	$\left(\frac{f}{g}\right)(x)=$

Composition of functions

Function composition is applying one function to the result of another. For example:

Given 2 functions $f(x)$ and $g(x)$ we can determine:
$(f \circ g)(x)=f(g(x))$ which means to \qquad
$(g \circ f)(x)=g(f(x))$ which means to

Given $f(x)=x-7$ and $g(x)=x^{2}+2$. Find the following

$(f \circ g)(x)=$	$(g \circ f)(x)=$
$(f \circ g)(3)=$	$(g \circ f)(3)=$

Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x-4}$. Find the following

$(f \circ g)(x)=$	$(g \circ f)(x)=$
$(f \circ g)(5)=$	$(g \circ f)(5)=$

Lesson 9: Inverses Functions

Definition of a Function

A relation is said to be a Function if and only if each \qquad value corresponds to only one \qquad value.

Graphically: Use the \qquad to determine if the graph is a function.

Determine if the following graphs are functions?

One to One Functions (1-1 functions)

A Function is said to be one to one if each \qquad value corresponds to only one value for \qquad .

Graphically: Use the \qquad to determine if the following functions are One to One Functions.

Determine if the following funcitons are One to One Functions

What is an Inverse?

Only One to One Functions have Inverse Functions.

Domain of f

Range of f

Is f a function? \qquad Is fone to one? \qquad

Let us suppose that there exists a function g with the following properties:

Is g a function? \qquad

Is g one to one? \qquad

Function composition:

Similarly,

Definition of Inverse Functions:
If f is a one to one function, then g is the inverse function of f if:
for every x in the domain
and

To verify if 2 given functions are inverses
f and g are inverses if:

$$
f(g(x))=x
$$

AND
$g(f(x))=x$

Determine if the following 2 functions inverses of each other

$f(x)=3 x+2$ and $g(x)=\frac{x-2}{3}$	$f(x)=\frac{1}{4} x-5$ and $g(x)=4 x-20$	$f(x)=\frac{2}{x-5}$ and $g(x)=\frac{2}{x}+5$

To Find an Inverse from an Equation (given the function is 1 -1)

Steps:

1. Change $f(x)$ to y
2. Switch all x 's and y 's
3. Solve for y
4. Change y to $f^{-1}(x)$

Note: $f^{-1}(x)$ is notation for the inverse of $\mathrm{f}(\mathrm{x})$.
Pronounced: " f inverse of x ".
$f^{-1}(x)$ is NOT " f to the negative 1 exponent"

| Find $f^{-1}(x)$ for | Find $f^{-1}(x)$ for |
| :--- | :--- | :--- |
| $f(x)=2 x+7$ | $f(x)=4 x^{3}-1$ |\quad Find $f^{-1}(x)$ for $f(x)=\frac{2}{x}$

To Sketch an Inverse from a Graph

$$
y=x^{2}
$$

Is the original graph a function?
Is the original graph 1-1?
$y=x^{2}$

NVERSE

Is the inverse graph a function? Why?

Sketch an Inverse for the following graphs

Lesson 10: Distance, Midpoint and Circles

Distance Formula (Derivation)

Distance Formula

The \qquad d, between two point $A\left(x_{1}, y_{1}\right)$ to $B\left(x_{2}, y_{2}\right)$ can be found by: $d=\sqrt{(\quad)^{2}+(\quad)^{2}}$

Note that the distance is a \qquad -

Examples: Find the distance between the following pairs of points

$(5,1),(8,5)$	$(-4,1),(2,-3)$

Midpoint Formula

The \qquad of a line segment, from $A\left(x_{1}, y_{1}\right)$ to $B\left(x_{2}, y_{2}\right)$ can be found by the formula:
$(-,-)$
Note that the midpoint is a \qquad so the answer should be written as an
\qquad .

Examples: Find the midpoint between the following pairs of points

$(-4,-7),(-1,-3)$	$(7 \sqrt{3},-6),(3 \sqrt{3},-2)$

Circles

A \qquad is a set of points in a plane that are located a fixed distance, called the \qquad
from a given point, called the \qquad .

Equation of a Circle (derivation)

The equation of a circle is standard form is:
Where (h, k) is the \qquad of the circle and r is the \qquad of the circle.

1. Given a center and a radius, write the equation

$C:(2,-1)$	$C:(-3,5)$	$C:(-4,2)$
$r=4$	$r=3$	$r=\sqrt{5}$

Steps to graph a circle:

1. Determine the \qquad of the circle and draw the point on your graph
2. Determine the \qquad of the circle and move up, down, left and right
\qquad units from the center
3. Connect the points giving it a \qquad shape
4. Graph given an equation in standard form

5. Complete the square and graph

When the equation of a circle is not in \qquad form, we must \qquad
to find the radius, center and graph.

