Lesson 6: Linear Functions and their Slope

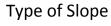
A linear function is represented by a ______ line when graph, and represented in an _____ where the variables have no whole number exponent higher than _____.

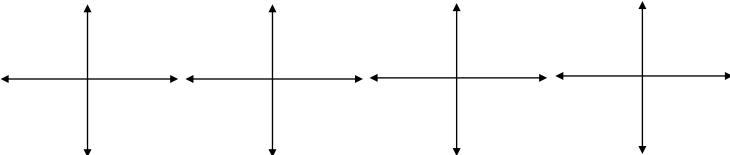
Forms of a Linear Equation

Name	Equation	When is it useful to use this form?
Standard Form		
Slope-Intercept Form		
Point Slope Form		

Slope - Steepness of a Line

Formula:





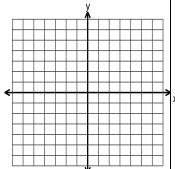
Examples:

Find the slope for the following pairs of points. Then plot the points and draw the linear function containing the two points

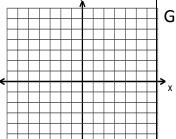
(6, -4) and (-4, 2) Slope: (-3, 4) and (2, 4) Slope: (1, 5) and (1, 2)

Slope:

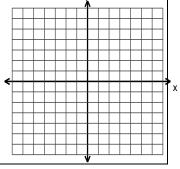
Graph:



Graph:



Graph:



Special Cases: Use HOY VUX

Н

V

0

U

Υ

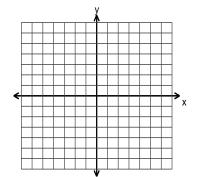
Χ

Graph using a Point and a Slope

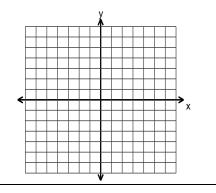
- 1. Plot the _____.
- 2. Use ______ to find another point. Think numerator = _____ and denominator =
- 3. Connect points with a _____ line using _____ at the ends.

 $m = \frac{3}{5} \quad through \quad (1, -2)$

m = 0 through (1, -2)



m undefined through



(1,-2)

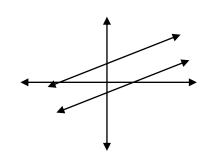
Writing Equations of Linear Functions:

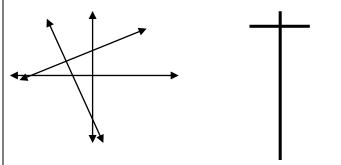
Given Information	Steps:
A Point and a Slope	 Plug information into form, when possible. Solve for to answer in form.
Special Cases where slope is undefined or	1. If slope is, then the line is and the equation is
0 Use HOY VUX	2. If slope is, then the line is and the equation is
2 Points	1. Use 2 points to solve for 2. Plug and one of the into point-slope form. 3. Solve for to answer in form.

Write the following equations:	
Slope of 6, and passes through (-2, 5)	Slope of $-\frac{3}{5}$, and passes through (10, -4)
Slope of 0, and passing through (3,1)	Undefined Slope, and passing through (3,1)
Line passing through the points (-3, 1) and (2, 4)	Line passing through the points (3, 5) and (8, 15)

Parallel Slopes

Perpendicular Slopes





Perpendicular slopes are ______.

Writing Equations using Parallel and Perpendicular Slopes

- 1. Put the given equation into ______ form to find _____.
- 2. If the lines are parallel, then slope of the new line is the ______. If the lines are perpendicular, then slope the new line is ______.
- 3. Plug this new _____ and the given point into _____ form.
- 4. Solve for _____ to get answer in _____ form.

Find the equation of a line passing through (-2, -7) and parallel to the line 10x + 2y = 7.

Find the equation of a line passing through (-4, 2) and *perpendicular* to the line $y = \frac{1}{3}x + 7$.

Special Cases: Use HOY VUX

Find equation passing through (-2, 6) perpendicular to x = -4.

Find equation passing through (4, 8) perpendicular to y = 9.

Find equation passing through (-1, 5) parallel to x = 3.

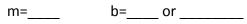
Find equation passing through (11, -3) parallel to y = -7.

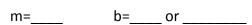
Graphing Linear Functions

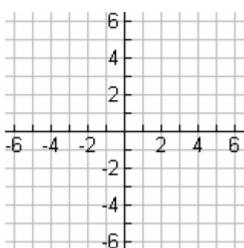
Form	Steps:
	1. Identify the and
Clara Intercent Form	2. Plot the point.
Slope Intercept Form	3. Find the next point by using or over
	4. Connect points using
	Translate the equation into form and repeat above steps
	OR
Standard Form	1. Find and plot the by setting y = (,)
	2. Find and plot the by setting x = (,)
	3. Connect points using .

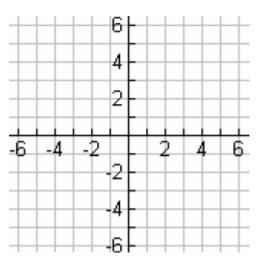
Graph
$$y = -3x + 2$$

$$_{Graph} y = \frac{3}{4}x - 3$$



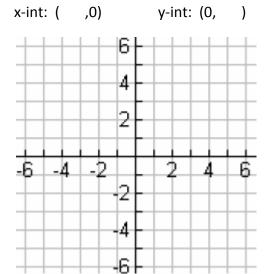


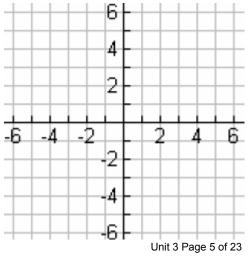




$$6x - 9y = 18$$

$$4x + y = 6$$





Lesson 7: Transformation of Graphs

Function	Graph	Table/Key Points
Basic Linear Function: $f(x) = x$	2 2 > x	Vertex: (0,0) Key Points: (-1,-1) and (1,1)
Basic Quadratic function: $f(x) = x^2$	2 2 2 2 2 2	Vertex: (0,0) Key Points: (-1,1) and (1,1)
Basic Root Function: $f(x) = \sqrt{x} = x^{\frac{1}{2}}$	y 4 3 2 1 1 2 3 4 5 x	Vertex: (0,0) Key Points: (1,1)

Function	Graph	Table/Key Points
Basic Absolute Value function: $f(x) = x $	y 4 2 2 -2 2 3	Vertex: (0,0) Key Points: (-1,1) and (1,1)
Basic Cubic Function:		(0.0)
$f(x) = x^3$	2	Vertex: (0,0) Key Points: (-1,1) and (1,1)
Basic Cube Root Function:	y	Vertex: (0,0)
$f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$	2	Key Points: (-1,1) and (1,1)

Vertical Shifting

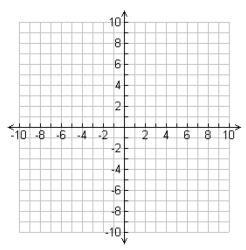
Let f(x) be a function, and k be a number.

y = f(x) + k	When you k to the, the graph shifts
y = f(x) - k	When you k to the, the graph shifts

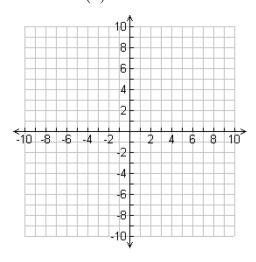
Examples:

Graph
$$f(x) = |x|$$

 $g(x) = |x| + 2$
 $h(x) = |x| - 3$



Graph $f(x) = x^{2}$ $g(x) = x^{2} + 3$ $h(x) = x^{2} - 5$



Horizontal Shifting

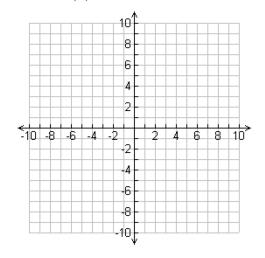
Let f(x) be a function, and h be a number.

$y = f\left(x+h\right)$	When you h to the, the graph shifts
y = f(x-h)	When you h to the, the graph shifts

Examples

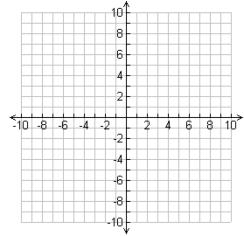
$$f(x) = \sqrt{x}$$
Graph $g(x) = \sqrt{x+1}$

$$h(x) = \sqrt{x-3}$$



Graph
$$f(x) = x^3$$

 $g(x) = (x+3)^3$
 $h(x) = (x-2)^3 + 4$



Vertical Stretch and Compress

 $y = a \cdot f(x)$

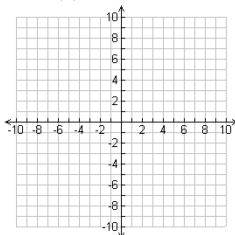
When multiplying the function by a ______value, the graph gets _____ vertically. To graph, we will _____ the y value of the key points by the value ____.

When multiplying the function by a ______value, the graph gets _____. Examples:

$$f(x) = \sqrt[3]{x}$$

Graph $g(x) = 2\sqrt[3]{x}$

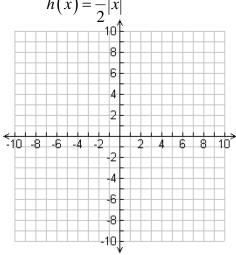
$$h(x) = -\sqrt[3]{x}$$



$$f(x) = |x|$$

Graph g(x) = -|x|

$$h(x) = \frac{1}{2} |x|$$



Steps to Graph with more than one transformation:

$$y = a\left(x - h\right)^2 + k$$

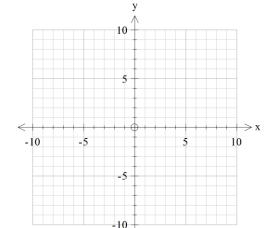
of the graph. 1. Determine the

2. Find the horizontal shift (____), and vertical shift (____), to find the translated _____

3. Use the stretch and compress () to find new key points in relation to your new vertex.

4. Connect all points. Make sure that your graph looks like the _____

1. $f(x) = -2(x-3)^2 - 4$



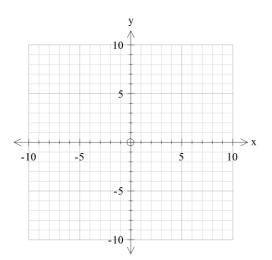
Horizontal Shift:

Vertical Shift: _

Vertex:

Compress/Stretch: _____

2. $f(x) = \frac{1}{2}\sqrt{x+5} + 2$



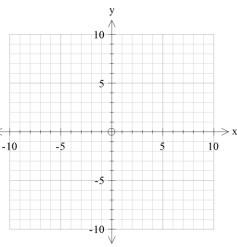
Horizontal Shift:_____

Vertical Shift: _____

Vertex: _____

Compress/Stretch: _____

3. $f(x) = -(x-1)^3 + 5$



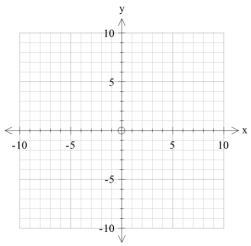
Horizontal Shift:_____

Vertical Shift: _____

Vertex: _____

Compress/Stretch: _____

4. $f(x) = \sqrt[3]{x+3} - 1$



Basic Shape:

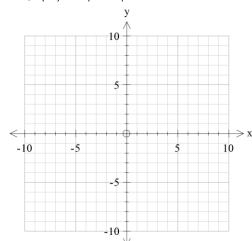
Horizontal Shift:_____

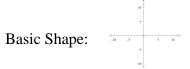
Vertical Shift: _____

Vertex: _____

Compress/Stretch:

5. f(x) = -|x-4| + 2





Horizontal Shift:_____

Vertical Shift: _____

Vertex: _____

Compress/Stretch: _____

Lesson 8: Operations of Functions

Finding Domain from an Eq Domain: Remember that the dom	uation nain of a function is the set of all	·
	nction, begin by assuming that the date where the function is not	
The 2 types of functions who have	e excluded values are:	
"bad" values that DO NOT solve. Write your domain 2. EVEN root function because qualifying values that DO	se belong to the domain, set the in notation wi se belong to the domain, set the expre Write your domain in	≠ 0 and thout these excluded values To identify the ssion the radical
Find Domain:		
$f(x) = x^2 - 7x$	$g(x) = \frac{3x+2}{x^2-2x-3}$	$h(x) = \frac{x-4}{x^3 + 9x^2 + 8x}$
$h(x) = \sqrt{3x + 2}$	$p(x) = \sqrt{x+3} + \sqrt{x-5}$	$q(x) = \frac{\sqrt{x+8}}{x-3}$

Combination of Functions

Given 2 functions f(x) and g(x) we can determine:

1. Sum: (f+g)(x) = ______ function by

_____ the two functions.

2. Difference: (f - g)(x) = _______. This operation makes a ______ function by the two functions.

3. Product: $(f \cdot g)(x) =$ _______. This operation makes a ______ function by ______ the two functions.

4. Quotient: $\left(\frac{f}{g}\right)(x)$ = ______ function by the two functions.

The domain of the new "combined" functions will be the intersection, or all values in ______, of the domains of f(x) and g(x), excluding any new "bad" values created by combining the functions. This usually occurs with the ______ of two functions.

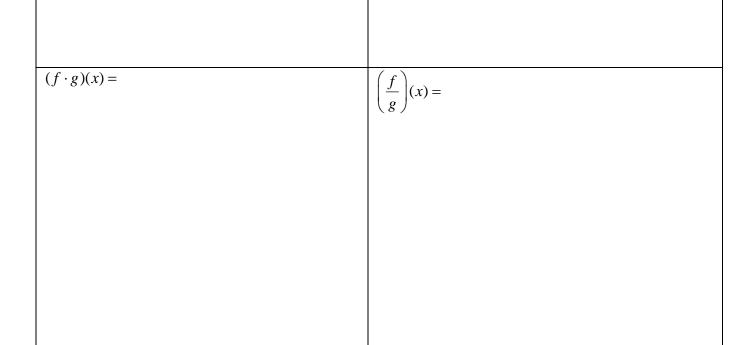
Given: $f(x) = x^2 + 2$ and g(x) = x - 7. Find the new combined functions and their new domain.

(f+g)(x) = (f-g)(x) =

 $(f \cdot g)(x) =$ $\left(\frac{f}{g}\right)(x) =$

Given $f(x) = \sqrt{x+2}$ and g(x) = x-4. Find the new combined functions and their new domain.

(f+g)(x) =	(f-g)(x) =



Composition of functions

Function composition is applying one function to the result of another. For example:

g

f

Given 2 functions f(x) and g(x) we can determine:

 $(f \circ g)(x) = f(g(x))$ which means to _____

 $(g \circ f)(x) = g(f(x))$ which means to ______

Given f(x) = x - 7 and $g(x) = x^2 + 2$. Find the following

$(f \circ g)(x) =$	$(g \circ f)(x) =$
$(f \circ g)(3) =$	$(g \circ f)(3) =$

Given $f(x) = x^2 + 2$ and $g(x) = \sqrt{x-4}$. Find the following

$(f \circ g)(x) =$	$(g \circ f)(x) =$
$(f \circ g)(5) =$	$(g \circ f)(5) =$

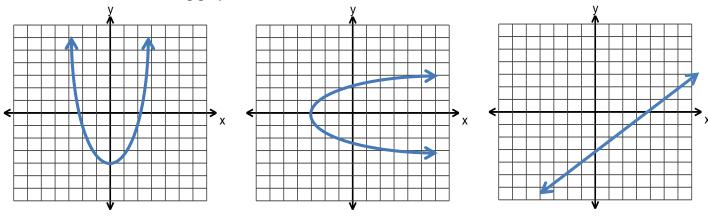
Lesson 9: Inverses Functions

Definition of a Function

A relation is said to be a Function if and only if each _____value corresponds to only one _____value.

Graphically: Use the ______ to determine if the graph is a function.

Determine if the following graphs are functions?

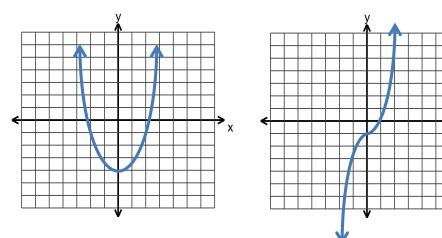


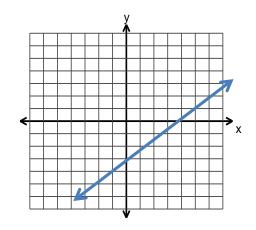
One to One Functions (1 - 1 functions)

A Function is said to be one to one if each _____ value corresponds to only one value for ____.

Graphically: Use the ______to determine if the following functions are One to One Functions.

Determine if the following funcitons are One to One Functions

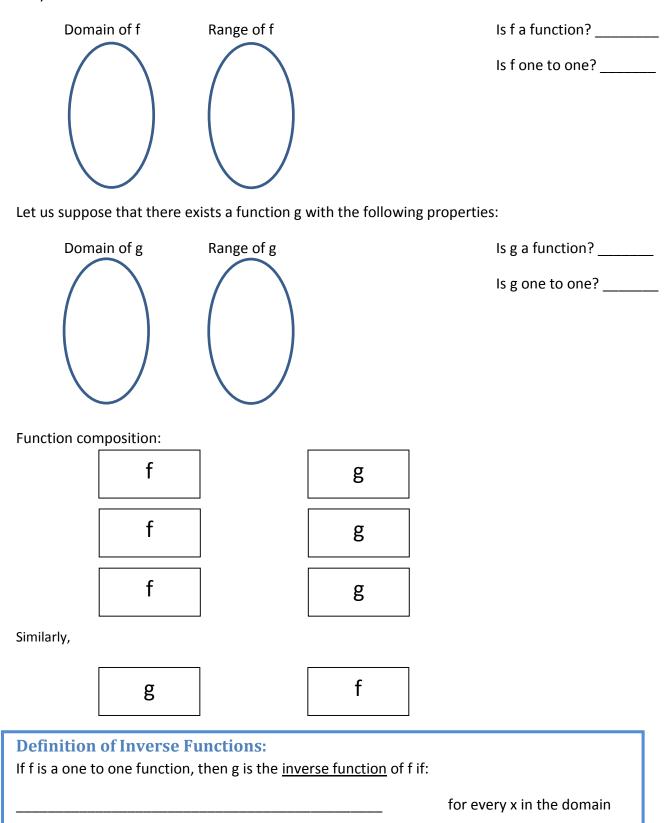




What is an Inverse?

and

Only One to One Functions have Inverse Functions.



for every x in the domain

To verify if 2 given functions are inverses

f and g are inverses if:

$$f\left(g\left(x\right)\right) = x$$

$$g(f(x)) = x$$

Determine if the following 2 functions inverses of each other

$$f(x) = 3x + 2$$
 and $g(x) = \frac{x-2}{3}$

$$f(x) = \frac{1}{4}x - 5$$
 and $g(x) = 4x - 20$

$$f(x) = 3x + 2$$
 and $g(x) = \frac{x - 2}{3}$ $f(x) = \frac{1}{4}x - 5$ and $g(x) = 4x - 20$ $f(x) = \frac{2}{x - 5}$ and $g(x) = \frac{2}{x} + 5$

To Find an Inverse from an Equation (given the function is 1 - 1)

Steps:

- 1. Change f(x) to y
- 2. Switch all x's and y's
- 3. Solve for y
- 4. Change y to $f^{-1}(x)$

Note: $f^{-1}(x)$ is notation for the inverse of f(x).

Pronounced: "f inverse of x".

 $f^{^{-1}} ig(x ig)$ is NOT "f to the negative 1 exponent"

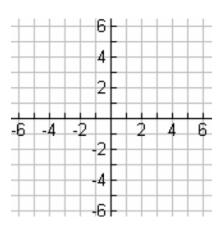
Find $f^{-1}(x)$ for $f(x) = 2x + 7$	Find $f^{-1}(x)$ for $f(x) = 4x^3 - 1$	Find $f^{-1}(x)$ for $f(x) = \frac{2}{x}$	

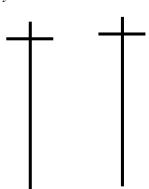
To Sketch an Inverse from a Graph

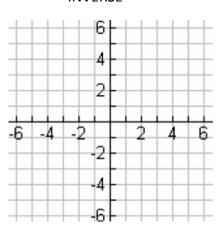
$$y = x^2$$

INVERSE

INVERSE



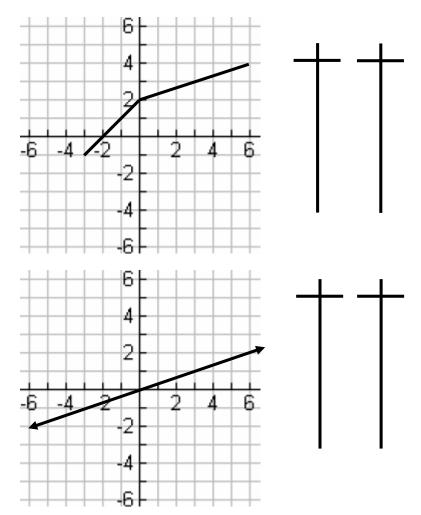




Is the original graph a function? Is the original graph 1 - 1?

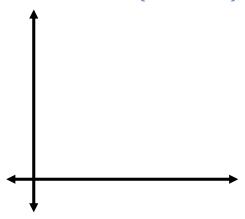
Is the inverse graph a function? Why?

Sketch an Inverse for the following graphs



Lesson 10: Distance, Midpoint and Circles

Distance Formula (Derivation)



Distance Formula

The ______, d , between two point $A(x_1,y_1)$ to $B(x_2,y_2)$ can be found by:

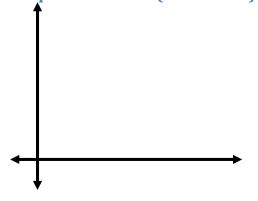
$$d = \sqrt{\left(\right)^2 + \left(\right)^2}$$

Note that the distance is a ______.

Examples: Find the <u>distance</u> between the following pairs of points

(5,1), (8,5)	(-4,1), (2,-3)

Midpoint Formula (Derivation)



Midpoint Formula

The _____ of a line segment , from $A(x_1,y_1)$ to $B(x_2,y_2)$ can be found by the formula:

Note that the mid<u>point</u> is a ______, so the answer should be written as an

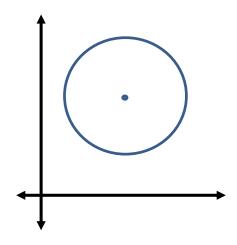
Examples: Find the midpoint between the following pairs of points

$$(-4,-7)$$
, $(-1,-3)$ $(7\sqrt{3},-6)$, $(3\sqrt{3},-2)$

Circles

A ______ is a set of points in a plane that are located a fixed distance, called the _____, from a given point, called the _____.

Equation of a Circle (derivation)



The equation of a circle is standard form is:_____

Where (h,k) is the _____ of the circle and r is the ____ of the circle.

1. Given a center and a radius, write the equation

C: (2,-1) $r = 4$	C: (-3,5) $r = 3$	C:(-4,2)
r=4	r=3	$C: (-4,2)$ $r = \sqrt{5}$

Steps to graph a circle:

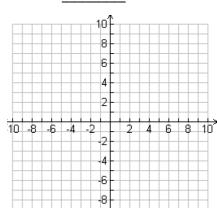
- 1. Determine the ______ of the circle and draw the point on your graph
- 2. Determine the _______of the circle and move up, down, left and right _____units from the center
- 3. Connect the points giving it a _____ shape

2. Graph given an equation in standard form

$$(x-2)^2 + (y+3)^2 = 16$$

Center: _____

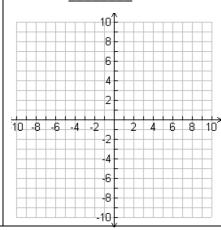
Radius =



$$x^2 + y^2 = 49$$

Center:

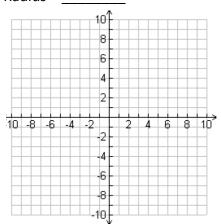
Radius = _____



$$(x+3)^2 + (y-5)^2 = 20$$

Center: _____

Radius =



3. Complete the square and graph

When the equation of a circle is not in ______ form, we must _____

to find the radius, center and graph.

$$x^2 + y^2 + 8x + 4y + 16 = 0$$

Standard Form: _____

Center: _____

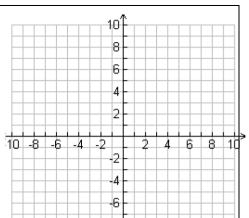
Radius =

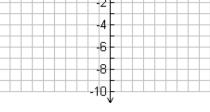
$$x^2 + y^2 + 12x - 6y + 29 = 0$$

Standard Form: _____

Center: _____

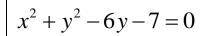
Radius =

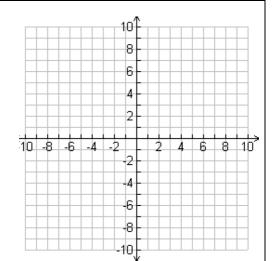




10 -8 -6 -4 -2 2 4 6 8 10

-10





Standard Form: _____

Center: _____

Radius =_____