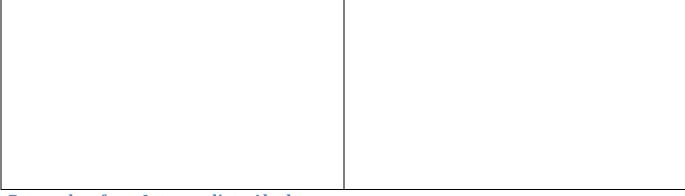
Lesson 17: Exponential Functions

An exponential function is a function where a ______ is raised to a ______.

$$f(x) = b^x$$
 where b > 0 and b $\neq 1$

Examples of Exponential Functions

Non-examples of Exponential Functions



Remember from Intermediate Algebra

$$x^0 =$$

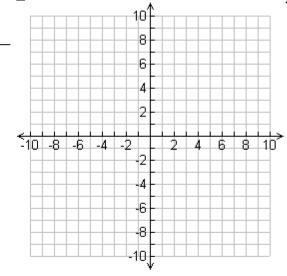
$$x^{1} =$$

$$x^{-1} =$$

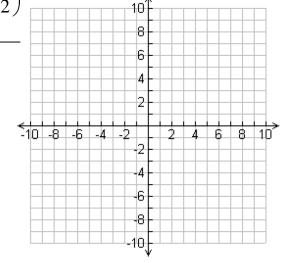
$$\left(\frac{a}{b}\right)^{-1} =$$

Graph the following Exponential Functions:

 $f(x) = 2^x$



 $f(x) = \left(\frac{1}{2}\right)^x$



Domain:_____

Range:

X-int:_____

Y-Int:

Asymptote:_____

Domain:_____

Range:_____

X-int:_____

Y-Int:_____

Asymptote:

Transformations

Parent Function: $f(x) = b^x$

All exponential functions (in "basic" form) have 3 point on their graphs:

Vertical Shift	$f(x) = b^x + c$	
	$f(x) = b^x - c$	
Horizontal Shift	$f(x) = b^{(x+c)}$	
	$f(x) = b^{(x-c)}$	
Reflections	$f(x) = -b^x$	
	$f(x) = b^{-x}$	
Vertical Stretch and	$f(x) = c \cdot b^x$	c > 1
Compress	Note that $c \cdot b^x \neq (cb)^x$	0 < c < 1

If you have more than one transformation,		
use the		
or	to determine the	
order of the transformations.		

Transformations Examples:

Sketch

Then, sketch the following

$$f(x) = 3^{x}$$

$$-10 -8 -6 -4 -2 2 4 6 8 10$$

$$-6$$

$$f_2(x) = 3^{x-5}$$

$$f_3(x) = 3^x - 4$$

$$f_4(x) = -3^x$$

$$f_5(x) = 2 \cdot 3^x$$

Natural Number e:

Of all possible choices of bases, the most preferred or most natural base it the number e. The number e has important significance in science and mathematics. It is often called Euler's number named after Leonhard Euler.

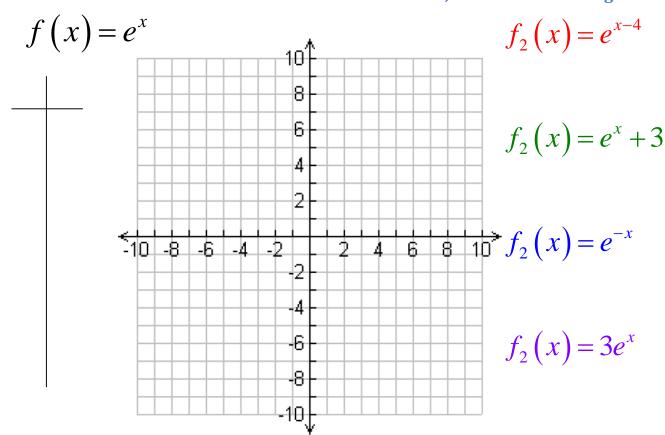
$$e = 2.7182818284590452353602874713527...$$

The number e is defined by:	n	(1 + 1/n) ⁿ
	1	2.00000
If $n : n \to n$ with $n : n \to n$ and $(1, 1)^n$	2	2.25000
If n is a positive integer, then $\left(1+\frac{1}{n}\right)^n \to e$ as $n \to \infty$	5	2.48832
(",	10	2.59374
	100	2.70481
	1,000	2.71692
	10,000	2.71815
1	00 000	2 71827

NOTE: The number e is a ______, not a ______.

Sketch

Then, sketch the following



Lesson 18: Logarithmic Functions

Exponential Function:
$$f(x) = 2^x$$

Find the Inverse:

We cannot find the	of the exponential equation becau	use we have not yet learned to	
	xponent. We need a new	for the	
of exponentia	al.		
Just like	is the opposite of addition,		
And	_ is the opposite of multiplication,		
And	is the opposite of square,		
The exponential function has an opposite (or), called			
Logarithmic Function:			
	if and only if		
The base stays the same for both b	out we the x and the	he y (because they are)	

Note: Some bases are used frequently, and have simplified notation.

Common Log with Base 10: $\log_{10} x =$

Natural Log with Base e: $\log_e x =$

Logarithm Form	Exponential Form
$y = \log_b x$	
$y = \log x$	
$y = \ln x$	

Change	from	Logarithmic	Form to	Exponential	Form
9		8		PP	- 0

$2 = \log_5 x$	$3 = \log_4 64$	ln 7 = y

Change from Exponential Form to Logarithmic Form

$12^2 = x$	$b^3 = 8$	$e^y = 9$

Evaluate Logs WITHOUT Calculator

- 1. Set log = _____.
- 2. Switch log equation to _______.
- 3. _____ for x.
- 4. Remove _____ from your answer.

$\log_2 16$	$\log_3 9$	log ₂₅ 5
log ₇ 7	$\log_7 7^2$	log ₅ 1

Properties of Logs:

• log _a a =	• ln e =
• log _a 1 =	• ln1=
$\log_a a^r =$	• $\ln e^r =$
• $a^{\log_a r} =$	• $e^{\ln r} =$

Evaluate:

	$\log_{15} 15 =$	log ₉ 1=	$\log_7 7^8 =$	$3^{\log_3 17} =$
--	------------------	---------------------	----------------	-------------------

Graphing Logarithmic Functions

Let's try to answer the first question we posed in this section again using _____. Find the inverse of $f(x) = 2^x$ algebraically.

So, $f(x) = 2^x$ and ______ are inverses.

More generally, $f(x) = b^x$ and ______ are inverses.

 $f(x) = 3^x$ and ______ are inverses.

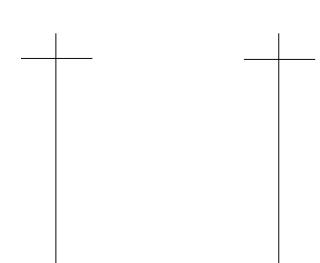
 $g(x) = e^x$ and _____ are inverses.

 $h(x) = \log_6 x$ and ______ are inverses.

 $p(x) = \log x$ and ______ are inverses.

Sketch
$$f(x) = 2^x$$
 and $f(x) = \log_2 x$

$$f(x) = \log_2 x$$



$$f(x) = 2^x$$

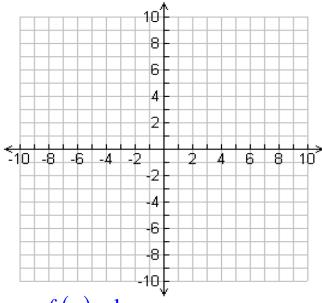
Domain:_____

Range:_____

X-int:_____

Y-Int:_____

Asymptote:_____



$$f(x) = \log_2 x$$

Domain:_____

Range:_____

X-int:_____

Y-Int:_____

Asymptote:_____

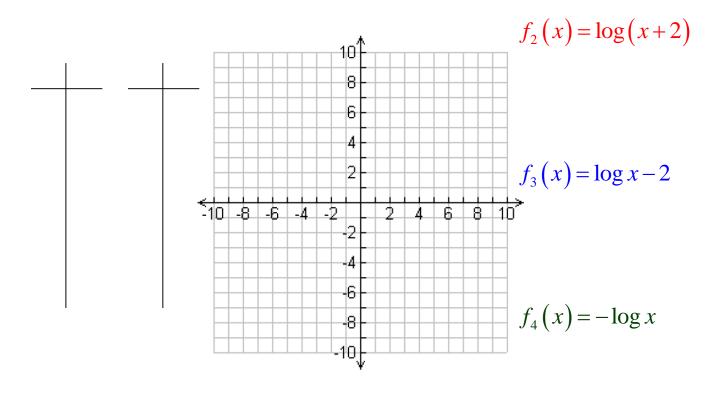
Transformations

Parent Function: $f(x) = \log_b x$

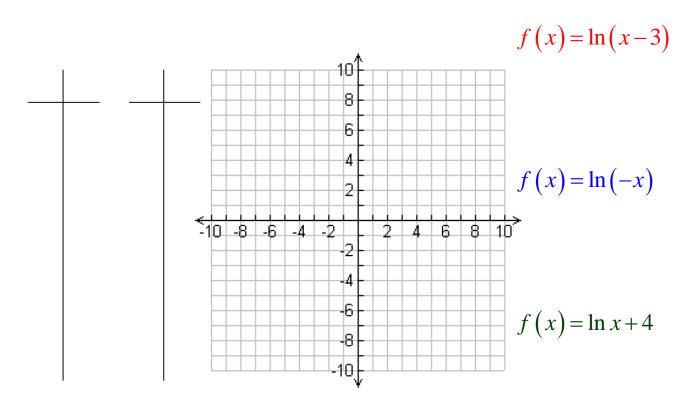
	T	
Vertical Shift	$f(x) = \log_b x + c$	
	$f(x) = \log_b x - c$	
Horizontal Shift	$f(x) = \log_b(x+c)$	
	$f(x) = \log_b(x - c)$	
Reflections	$f(x) = -\log_b x$	
	$f(x) = \log_b(-x)$	
Vertical Stretch and	$f(x) = c \log_b x$	c>1
Compress	,	0 < c < 1

Examples:

Sketch: $f(x) = \log x$



Sketch: $f(x) = \ln x$



Lesson 19: Properties of Logarithms

In this section, we will be studying the ______ or ____ of logarithms.

The first 3 properties will be used to ______ long expressions with logs, called _____, as well as _____ short expressions with logs, called

____.

The last property will help us calculate ______ of logs using the ______.

Log Rules

Product Rule: $\log_b mn =$

Expand:

$\log_4(7x)$	$\log_8(xyz)$

Condense:

$$\log_4 2 + \log_4 5$$

$$\log_4 2 + \log x$$

Quotient Rule: $\log_b \frac{m}{n} =$

Expand:

$$\log_7\left(\frac{19}{x}\right) \qquad \qquad \ln\left(\frac{e^3}{7}\right)$$

Condense:

$\log(4x-3)-\log x$	$\log_4 16 - \log_4 2$

Power Rule: $\log_b m^p =$

Expand:

$\log_5 x^4$	$\log(4x)^5$	$\ln \sqrt{x}$

Condense:

$2\log x$	$4\log_5 2$
$5\log_b x - 2\log_b 6 - \frac{1}{2}\log_b y$	$3\ln(x+7)-\ln x$

and
·
bases other than or If with a different base, then you need formula.
$\log_2 100 =$
e learned this lesson are:

We will use these properties in the next section to ______logarithmic

equations.

Unit 4 Page 11 of 19

Lesson 20: Exponential and Logarithmic Equations

There are 2 types of ______ equations and 2 types of _____ equations we will be solving in this section.

Exponential Equations:

	Property	Examples	Steps	
Type 1	Bases can be expressed as the		1.	Change both expressions to the
			2.	Set the exponents to each other and
Type 2	Bases can be		1.	Isolate the
	expressed as the		3.	Take the of both sides of equation. This will cause the variable in the exponent to move to the coefficient of expression (rule).

Type 1: Exponential Equations with Common Bases

Change of Base Solving Method:

If
$$b^m = b^n$$
, then

$$4^{x} = 16$$

$$2^{3x-8} = 16$$

$$27^{x+3} = 9^{x-1}$$

$$9^{x} = \frac{1}{3}$$

$$9^{x} = \frac{1}{\sqrt{3}}$$

Type 2: Exponential Equations with Uncommon Bases

$4^x = 15$	$9^{-x} = 2$	$40e^{3x} - 3 = 237$

Logarithmic Equations:

If there are more than one log in the equation, then the bases must be ______.

	Property	Examples	Steps	
Type 1	the or	•	1. 2. 3.	to a single logarithm using the of logarithms. Rewrite equation as a equation. Solve and all solutions do Not make the arguments
Type 2	Equation can be expressed as the or		2. 3	to a single logarithm using the of logarithms on each side of equation. Set equal to each other. Solve and all solutions do Not make the arguments

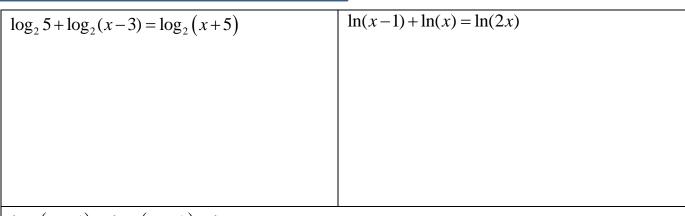
Type 1: Solving Log Equations (Log = #)

$\log(x-3) = 1$	$\log_4(x+3) = 2$	$3\ln(2x) = 12$
100 0 100 (0 7) 2	1 (2)	2 . 1 (2)

$$\log_2 x + \log_2 (x-7) = 3$$
 $\log_4 (x-3) = 2 + \log_4 (x+3)$

Type 2: Solving Log Equations (Log = Log)

If $\log_b m = \log_b n$, then m = n.



$$\log(x+1) = \log(x+9) - \log x$$

Lesson 21: Matrices

-	C						
1)	efi	n	П	ш	0	n	C
					.,		

Matrix: A rectangular array of numbers arranged in ______ and _____ placed inside brackets

Matrices: _____ of Matrix

Elements: The _____ inside the brackets of a matrix

Examples:

Today we will be using matrices to solve Linear System of Equations. In the past we have used Graphing, Substitution and Elimination to solve Linear Equations (usually in 2 variables). In this lesson we will be solving linear equations in 3 variables with Matrices.

2-Variable Linear system Example	3-Variable system Example

<u>Augmented Matrix</u>: A Matrix with a _____ separating the columns into 2 groups. We usually use an augmented matrix to rewrite a system of Linear Equations.

Rewrite the following system of equations in an augmented matrix

System of Equation	Augmented Matrix
3x + y - z = 9	
-x - y + 3z = 3	
x + 2y - z = 0	
x - 3y + 2z = -12	
y + 4z = -3	
z = 2	
$3x \qquad -5z = -12$	
4y - z = 5	
2x-3y = -4	

Echelon Form: a Matrix is said to be in Row Echelon form if there are _____ down the main diagonal (upper-

left to lower-right) and ______ below the ones

$$\begin{bmatrix}
1 & a & b & c \\
0 & 1 & d & e \\
0 & 0 & 1 & f
\end{bmatrix}$$

$$\begin{bmatrix} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f \end{bmatrix}$$
 example:
$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

So, if the matrix is in row echelon form, then use _______ to solve the system.

Our goal: To Solve linear system of equations by Matrices

System of equations	3x + y - z = 9	
	-x - y + 3z = 3	
	x + 2y - z = 0	
Rewrite system of equations as a augmented matrix	[3	
	$\begin{bmatrix} 3 & 1 & -1 & 9 \\ -1 & -1 & 3 & 3 \\ 1 & 2 & -1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 2 & -1 & 0 \end{bmatrix}$	
Use row operations to change matrix to a row	$\begin{bmatrix} 1 & 2 & -1 & 0 \end{bmatrix}$	
equivalent matrix in row echelon form. (We will	0 1 2 3	
learn how to use row operations next.)	$ \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix} $	
Rewrite matrix from row echelon form to system of	x + 2y - z = 0	
equations.	y + 2z = 3	
	z = 2	
Solve the system using back substitution	(4,-1,2)	

Row Operations

There are 3 row operations that produce matrices that represent systems with the same solution set.

Row Operation	Notation	Example
Interchange 2 Rows	$R_1 \leftrightarrow R_3$	$ \begin{bmatrix} 3 & 1 & -1 & 9 \\ -1 & -1 & 3 & 3 \\ 1 & 2 & -1 & 0 \end{bmatrix} $
Multiply a Row by a non-zero number	$2R_3 \rightarrow R_3$	$ \begin{bmatrix} 1 & 2 & -1 & 0 \\ -1 & -1 & 3 & 3 \\ 3 & 1 & -1 & 9 \end{bmatrix} $
Multiply a Row by a non-zero number and then add the product to any other row	$R_1 + R_2 \to R_2 \qquad -6R_1 + R_3 \to R_3$	$ \begin{bmatrix} 1 & 2 & -1 & 0 \\ -1 & -1 & 3 & 3 \\ 6 & 2 & -2 & 18 \end{bmatrix} $

Gauss/Jordan Elimination:

Use row Operations to Simplify the Matrix into a Row Equivalent Matrix is Row Echelon Form

[1 # # #]	[1 # # #]	[1 # # #]	[1 # # #]	[1 # # #]
# # # #	0 # # #	0 1 # #	0 1 # #	0 1 # #
	0 # # #]	\[\[\] 0 # # \[# \]		
Get a 1 in the upper	Get 0's below the 1 in	Get a 2 in the second	Get a 0 below the 1 in	Get a 1 in the third
right hand corner	the first column	row, second column	the second column	row, third column

Steps to solve Systems of Equations using Matrices

- 1. Write system as an augmented matrix
- 2. Use row operations to get row equivalent matrix in Row Echelon Form
- 3. Use Substitution to solve for the variables. Answer solution in an ordered triple.

Solve the following System of Equations

$$3x+y-z=9$$
$$-x-y+3z=3$$
$$x+2y-z=0$$

$$2x + y - z = 10$$

$$-x + 2y + 2z = 6$$

$$x - 3y + 2z = -15$$

Special Cases

Just as in system of equations in 2 variables, you may encounter systems with no solution or infinitely many solutions.

Matrix is Row Echelon Form	System of Equation	How many solutions	Solution
$ \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix} $			
$ \begin{bmatrix} 1 & 3 & -4 & & 8 \\ 0 & 1 & -11 & & 5 \\ 0 & 0 & 0 & & 4 \end{bmatrix} $			
$ \begin{bmatrix} 1 & -2 & 1 & & 4 \\ 0 & 1 & -3 & & 7 \\ 0 & 0 & 0 & & 0 \end{bmatrix} $			

$$2x + 4y - 6z = 10$$

$$x - y + z = 4$$

$$x + 2y - 3z = 7$$

$$-3x + y + z = 1$$

$$4x - 3y + 2z = 2$$

$$5x - 3y + z = 1$$