\qquad is raised to a \qquad _.

$$
f(x)=b^{x} \text { where } \mathrm{b}>0 \text { and } \mathrm{b} \neq 1
$$

Examples of Exponential Functions
Non-examples of Exponential Functions

Remember from Intermediate Algebra

$$
x^{0}=\quad x^{1}=\quad x^{-1}=\quad\left(\frac{a}{b}\right)^{-1}=
$$

Graph the following Exponential Functions:

Domain: \qquad
Range: \qquad
X-int: \qquad
Y-Int:
Asymptote: \qquad

Domain:
Range: \qquad
X-int:
Y-Int:
Asymptote:

Transformations

Parent Function: $f(x)=b^{x}$
All exponential functions (in "basic" form) have $\mathbf{3}$ point on their graphs:

Vertical Shift	$f(x)=b^{x}+c$	
	$f(x)=b^{x}-c$	
Horizontal Shift	$f(x)=b^{(x+c)}$	
	$f(x)=b^{(x-c)}$	
Reflections	$f(x)=-b^{x}$	
	$f(x)=b^{-x}$	
Vertical Stretch and Compress	$f(x)=c \cdot b^{x}$	$c>1$
		$0<c<1$

If you have more than one transformation, use the \qquad
or \qquad to determine the order of the transformations.

Transformations Examples:

Sketch
$f(x)=3^{x}$

$$
\begin{aligned}
& f_{2}(x)=3^{x-5} \\
& f_{3}(x)=3^{x}-4 \\
& f_{4}(x)=-3^{x} \\
& f_{5}(x)=2 \cdot 3^{x}
\end{aligned}
$$

Natural Number e:

Of all possible choices of bases, the most preferred or most natural base it the number e. The number e has important significance in science and mathematics. It is often called Euler's number named after Leonhard Euler.

$$
e=2.7182818284590452353602874713527 \ldots
$$

The number e is defined by:

n	$(1+1 / n)^{\mathrm{n}}$
1	2.00000
2	2.25000
5	2.48832
10	2.59374
100	2.70481
1,000	2.71692
10,000	2.71815
100,000	2.71827

NOTE: The number e is a \qquad , not a \qquad .

Sketch
$f(x)=e^{x}$

Then, sketch the following

$$
f_{2}(x)=e^{x-4}
$$

$$
f_{2}(x)=e^{x}+3
$$

$$
f_{2}(x)=3 e^{x}
$$

Lesson 18: Logarithmic Functions

Exponential Function: $f(x)=2^{x}$
Find the Inverse:

We cannot find the \qquad of the exponential equation because we have not yet learned to
\qquad for the \qquad in the exponent. We need a new \qquad for the
\qquad of exponential.

Just like \qquad is the opposite of addition,

And \qquad is the opposite of multiplication,

And \qquad is the opposite of square,

The exponential function has an opposite (or \qquad), called \qquad -.

Logarithmic Function:

\qquad if and only if \qquad .

The base stays the same for both but we \qquad the x and the y (because they are \qquad .)

Note: Some bases are used frequently, and have simplified notation.
Common Log with Base 10: $\log _{10} x=$
Natural Log with Base e: $\log _{e} x=$

Logarithm Form	Exponential Form
$y=\log _{b} x$	
$y=\log x$	
$y=\ln x$	

Change from Logarithmic Form to Exponential Form

$2=\log _{5} x$	$3=\log _{4} 64$	$\ln 7=y$

Change from Exponential Form to Logarithmic Form

$12^{2}=x$	$b^{3}=8$	$e^{y}=9$

Evaluate Logs WITHOUT Calculator

1. Set $\log =$ \qquad .
2. Switch log equation to \qquad .
3. \qquad for x.
4. Remove \qquad from your answer.

$\log _{2} 16$	$\log _{3} 9$	$\log _{25} 5$
$\log _{7} 7$	$\log _{7} 7^{2}$	$\log _{5} 1$

Properties of Logs:

• $\log _{a} a=$	$\bullet \ln e=$
• $\log _{a} 1=$	• $\ln 1=$
• $\log _{a} a^{r}=$	• $\ln e^{r}=$
• $a^{\log _{a} r}=$	• $e^{\ln r}=$

Evaluate:

$\log _{15} 15=$	$\log _{9} 1=$	$\log _{7} 7^{8}=$	$3^{\log _{3} 17}=$

Graphing Logarithmic Functions

Let's try to answer the first question we posed in this section again using \qquad .
Find the inverse of $f(x)=2^{x}$ algebraically.

So, $f(x)=2^{x}$ and \qquad are inverses.

More generally, $f(x)=b^{x}$ and \qquad are inverses.
$f(x)=3^{x}$ and \qquad are inverses.
$g(x)=e^{x}$ and \qquad are inverses.
$h(x)=\log _{6} x$ and \qquad are inverses.
$p(x)=\log x$ and \qquad are inverses.

Sketch $f(x)=2^{x} \quad$ and $\quad f(x)=\log _{2} x$

$f(x)=2^{x}$
Domain: \qquad
Range: \qquad
X-int: \qquad
Y-Int: \qquad
Asymptote: \qquad

Domain: \qquad
Range: \qquad
X-int: \qquad
Y-Int: \qquad
Asymptote: \qquad

Transformations
Parent Function: $f(x)=\log _{b} x$

Vertical Shift	$f(x)=\log _{b} x+c$	
	$f(x)=\log _{b} x-c$	
Horizontal Shift	$f(x)=\log _{b}(x+c)$	
	$f(x)=\log _{b}(x-c)$	
Reflections	$f(x)=-\log _{b} x$	
	$f(x)=\log _{b}(-x)$	
Vertical Stretch and Compress	$f(x)=c \log _{b} x$	$0<c<1$

Examples:
Sketch: $f(x)=\log x$

Sketch: $f(x)=\ln x$

Lesson 19: Properties of Logarithms
In this section, we will be studying the \qquad or \qquad of logarithms.

The first 3 properties will be used to \qquad long expressions with logs, called
\qquad , as well as \qquad short expressions with logs, called
\qquad _.

The last property will help us calculate \qquad of logs using the \qquad .

Log Rules

Product Rule: $\log _{b} m n=$

Expand:

$\log _{4}(7 x)$	$\log _{8}(x y z)$

Condense:

$\log _{4} 2+\log _{4} 5$	$\log 25+\log x$

Quotient Rule: $\log _{b} \frac{m}{n}=$
Expand:

$\log _{7}\left(\frac{19}{x}\right)$	$\ln \left(\frac{e^{3}}{7}\right)$

Condense:

$\log (4 x-3)-\log x$	$\log _{4} 16-\log _{4} 2$

Power Rule: $\log _{b} m^{p}=$
Expand:

$\log _{5} x^{4}$	$\log (4 x)^{5}$	$\ln \sqrt{x}$

Condense:

$2 \log x$	$4 \log _{5} 2$
$5 \log _{b} x-2 \log _{b} 6-\frac{1}{2} \log _{b} y$	$3 \ln (x+7)-\ln x$

On graphing and scientific calculators, there are logarithm buttons for the
\qquad or \qquad and
\qquad or \qquad .

Notice that there are no logarithm buttons for any bases other than \qquad or \qquad . If you need to estimate a logarithm in decimal form with a different base, then you need to use the \qquad formula.

Change of Base Formula: $\log _{b} m=$

Approximate:

$\log _{5} 140=$	$\log _{4} 15=$	$\log _{2} 100=$

In summary, the 4 properties of logarithms that we learned this lesson are:

- Product Rule: $\quad \log _{b} m+\log _{b} n=$ \qquad
- Quotient Rule:
$\log _{b} m-\log _{b} n=$ \qquad
- Power Rule :
$p \cdot \log _{b} m=$ \qquad
- Change of Base Formula: $\log _{b} m=$ \qquad

We will use these properties in the next section to \qquad logarithmic equations.

Lesson 20: Exponential and Logarithmic Equations
There are 2 types of \qquad equations and 2 types of \qquad equations we will be solving in this section.

Exponential Equations:

	Property	Examples	Steps
Type 1	Bases can be expressed as the \qquad		1. Change both expressions to the \qquad 2. Set the exponents \qquad to each other and \qquad
Type 2	Bases can \qquad be expressed as the		1. Isolate the \qquad 2. Take the \qquad of both sides of equation. This will cause the variable in the exponent to move to the coefficient of expression (\qquad rule). 3. \qquad for x .

Type 1: Exponential Equations with Common Bases
Change of Base Solving Method: If $b^{m}=b^{n}$, then

$4^{x}=16$	$2^{3 x-8}=16$	$27^{x+3}=9^{x-1}$
$9^{x}=\frac{1}{3}$	$9^{x}=\frac{1}{\sqrt{3}}$	

Type 2: Exponential Equations with Uncommon Bases

$4^{x}=15$	$9^{-x}=2$	$40 e^{3 x}-3=237$

Logarithmic Equations:

If there are more than one log in the equation, then the bases must be \qquad .

	Property	Examples	Steps
Type 1	Equation can be expressed as the \qquad or		1. \qquad to a single logarithm using the \qquad of logarithms. 2. Rewrite \qquad equation as a \qquad equation. 3. Solve and \qquad all solutions do Not make the arguments \qquad \qquad .
Type 2	Equation can be expressed as the \qquad or		1. \qquad to a single logarithm using the \qquad of logarithms on each side of equation. 2. Set \qquad equal to each other. 3. Solve and \qquad all solutions do Not make the arguments \qquad

Type 1: Solving Log Equations $(\log =\#)$

$\log (x-3)=1$	$\log _{4}(x+3)=2$	$3 \ln (2 x)=12$
$\log _{2} x+\log _{2}(x-7)=3$	$\log _{4}(x-3)=2+\log _{4}(x+3)$	

Type 2: Solving Log Equations ($\log =\log)$
If $\log _{b} m=\log _{b} n$, then $\mathrm{m}=\mathrm{n}$.

$\log _{2} 5+\log _{2}(x-3)=\log _{2}(x+5)$	$\ln (x-1)+\ln (x)=\ln (2 x)$

$\log (x+1)=\log (x+9)-\log x$

Lesson 21: Matrices

Definitions

Matrix: A rectangular array of numbers arranged in \qquad and \qquad placed inside brackets

Matrices: \qquad of Matrix

Elements: The \qquad inside the brackets of a matrix

Examples:

Today we will be using matrices to solve Linear System of Equations. In the past we have used Graphing, Substitution and Elimination to solve Linear Equations (usually in 2 variables). In this lesson we will be solving linear equations in 3 variables with Matrices.

2-Variable Linear system Example	3-Variable system Example

Augmented Matrix: A Matrix with a \qquad separating the columns into 2 groups. We usually use an augmented matrix to rewrite a system of Linear Equations.

Rewrite the following system of equations in an augmented matrix

System of Equation	Augmented Matrix		
$3 x+y-z=9$			
$-x-y+3 z=3$			
$x+2 y-z=0$			
$x-3 y+2 z=-12$			
$y+4 z=-3$			
$z=2$			
$-5 z=-12$			
$4 y-z$	$=5$		
$2 x-3 y$	$=-4$	\quad	$3 x$
:---:			

Echelon Form: a Matrix is said to be in Row Echelon form if there are \qquad down the main diagonal (upperleft to lower-right) and \qquad below the ones
$\left[\begin{array}{lll|l}1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f\end{array}\right]$
example: $\left[\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2\end{array}\right]$

So, if the matrix is in row echelon form, then use \qquad to solve the system.

Our goal: To Solve linear system of equations by Matrices

System of equations	$3 x+y-z=9$ $-x-y+3 z=3$ $x+2 y-z=0$
Rewrite system of equations as a augmented matrix	$\left[\begin{array}{ccc\|c}3 & 1 & -1 & 9 \\ -1 & -1 & 3 & 3 \\ 1 & 2 & -1 & 0\end{array}\right]$
Use row operations to change matrix to a row equivalent matrix in row echelon form. (We will learn how to use row operations next.)	$\left.\begin{array}{ccc\|c}1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2\end{array}\right]$
Rewrite matrix from row echelon form to system of equations.	$x+2 y-z=0$ $y+2 z=3$
Solve the system using back substitution	$(4,-1,2)$

Row Operations

There are 3 row operations that produce matrices that represent systems with the same solution set.

Row Operation	Notation		Example
Interchange 2 Rows	$R_{1} \leftrightarrow R_{3}$	$\left[\begin{array}{ccc\|c}3 & 1 & -1 & 9 \\ -1 & -1 & 3 & 3 \\ 1 & 2 & -1 & 0\end{array}\right]$	
Multiply a Row by a non-zero number	$2 R_{3} \rightarrow R_{3}$		$\left[\begin{array}{ccc\|c}1 & 2 & -1 & 0 \\ -1 & -1 & 3 & 3 \\ 3 & 1 & -1 & 9\end{array}\right]$
Multiply a Row by a non-zero number and then add the product to any other row	$R_{1}+R_{2} \rightarrow R_{2}$	$-6 R_{1}+R_{3} \rightarrow R_{3}$	
			$\left[\begin{array}{ccc\|c}1 & 2 & -1 & 0 \\ -1 & -1 & 3 & 3 \\ 6 & 2 & -2 & 18\end{array}\right]$

Gauss/Jordan Elimination:

Use row Operations to Simplify the Matrix into a Row Equivalent Matrix is Row Echelon Form

$\left[\begin{array}{lll\|l}1 & \# & \# & \# \\ \# & \# & \# & \# \\ \# & \# & \# & \#\end{array}\right]$	$\left[\begin{array}{lll\|l}1 & \# & \# & \# \\ 0 & \# & \# & \# \\ 0 & \# & \# & \#\end{array}\right]$	$\left[\begin{array}{lll\|l}1 & \# & \# & \# \\ 0 & 1 & \# & \# \\ 0 & \# & \# & \#\end{array}\right]$	$\left[\begin{array}{lll\|l}1 & \# & \# & \# \\ 0 & 1 & \# & \# \\ 0 & 0 & \# & \#\end{array}\right]$	$\left[\begin{array}{lll\|l}1 & \# & \# & \# \\ 0 & 1 & \# & \# \\ 0 & 0 & 1 & \#\end{array}\right]$
Get a 1 in the upper right hand corner	Get 0's below the 1 in the first column	Get a 2 in the second row, second column	Get a 0 below the 1 in the second column	Get a 1 in the third row, third column

Steps to solve Systems of Equations using Matrices

1. Write system as an augmented matrix
2. Use row operations to get row equivalent matrix in Row Echelon Form
3. Use Substitution to solve for the variables. Answer solution in an ordered triple.

Solve the following System of Equations

$$
\begin{array}{r}
3 x+y-z=9 \\
-x-y+3 z=3 \\
x+2 y-z=0
\end{array}
$$

$$
\begin{gathered}
2 x+y-z=10 \\
-x+2 y+2 z=6 \\
x-3 y+2 z=-15
\end{gathered}
$$

Special Cases

Just as in system of equations in 2 variables, you may encounter systems with no solution or infinitely many solutions.

Matrix is Row Echelon Form	System of Equation	How many solutions	Solution
$\left[\begin{array}{ccc\|c}1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2\end{array}\right]$			
$\left[\begin{array}{ccc\|c}1 & 3 & -4 & 8 \\ 0 & 1 & -11 & 5 \\ 0 & 0 & 0 & 4\end{array}\right]$			
$\left[\begin{array}{ccc\|c}1 & -2 & 1 & 4 \\ 0 & 1 & -3 & 7 \\ 0 & 0 & 0 & 0\end{array}\right]$			

$$
\begin{gathered}
2 x+4 y-6 z=10 \\
x-y+z=4 \\
x+2 y-3 z=7
\end{gathered}
$$

$$
\begin{array}{r}
-3 x+y+z=1 \\
4 x-3 y+2 z=2 \\
5 x-3 y+z=1
\end{array}
$$

