11.2: Frequency Distributions and Measures of Central Tendency

Now, we will begin studying some numerical measures that describe data sets. There are two basic types:

- Measures of central tendency (this section)
- Measures of dispersion (next section)

<u>Summation Notation</u>: This is a compact way to write "add up the numbers $x_1, x_2, ..., x_n$ "

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \ldots + x_n$$

Example 1: Consider the numbers 8, 2, 6, 10, 4, 9. Find $\sum_{i=1}^{6} x_i^2$.

The Mean: Ungrouped Data:

The *mean* of a set of quantitative data is equal to the sum of all the measurements in the data set divided by the total number of measurements in the set.

If x_1, x_2, \dots, x_n is a set of *n* measurements, then the *mean*, or *average*, is given by

[mean] =
$$\frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 where

 $\overline{x} = [\text{mean}]$ if data set is a sample $\mu = [\text{mean}]$ if data set is the population

The Mean: Grouped Data:

A data set of *n* measurements is grouped into *k* classes in a frequency table. If x_i is the midpoint of the *i*th class interval and f_i is the *i*th class frequency, then the *mean* of the grouped data is

[mean] =
$$\frac{\sum_{i=1}^{k} x_i f_i}{n} = \frac{x_1 f_1 + x_2 f_2 + \dots + x_k f_k}{n}$$
 where

 $\overline{x} = [\text{mean}]$ if data set is a sample $\mu = [\text{mean}]$ if data set is the population **Example 2:** Find the mean for the grouped data.

Interval	Frequency
1.5-4.5	3
4.5-7.5	4
7.5-10.5	7
10.5-13.5	2

The median:

Sometimes the mean can be misleading for a data set. Suppose that a math class had 7 students with test scores (out of a possible 100) of 88, 99, 7, 78, 89, 94, and 76.

The *median* is unaffected by extreme values. Essentially it is the "middle" of the data set.

To find the median, you'll need to sort the data in numerical order.

The Median (Ungrouped Data):

- If the number of measurements is odd, the median is the middle measurement when the measurements are arranged in descending or ascending order.
- If the number of measurements is even, the median is the mean of the two middle measurements when the measurements are arranged in descending or ascending order.

Example 3: Find the median of the test scores 88, 99, 7, 78, 89, 94, and 75.

The Mode:

The *mode* is the most frequently occurring measurement in a data set. There may be a unique mode, several modes, or no mode.

Example 4: Find the median and mode for the following data sets.

a. {4, 5, 5, 5, 5, 6, 7, 8, 12}

b. $\{1, 2, 3, 3, 3, 5, 7, 7, 7, 23\}$

c. $\{1, 3, 5, 6, 7, 9, 11, 15\}$

Example: Find the median of the groupe

Interval	Frequency
1.5-4.5	3
4.5-7.5	4
7.5-10.5	6
10.5-13.5	2
13.5-16.5	10
16.5-19.5	9
19.5-22.5	8