1.2: Finding Limits Graphically and Numerically

Limit of a function:

Definition of a Limit:

$$
\lim _{x \rightarrow a} f(x)=L \quad \lim _{x \rightarrow a} f(x)=L
$$

The statement above means that we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a but not equal to a.

We read this as "the limit of $f(x)$, as x approaches a, is equal to L."
Alternative notation: $f(x) \rightarrow L$ as $x \rightarrow a . \quad(f(x)$ approaches L as x approaches $a)$

Finding limits from a graph:
Example 1:

$$
\lim _{x \rightarrow-3} f(x)=1 \quad \lim _{x \rightarrow-4} f(x)=3
$$

$$
\lim _{x \rightarrow 2} f(x) * \text { Decent exist }
$$

$$
\begin{aligned}
& \left.\lim _{x \rightarrow 3} f(x)=4 \text { (Note that } f(3)=1\right) \left\lvert\, \begin{array}{l}
\lim _{x \rightarrow-6} f(x)=\infty \\
\lim _{x \rightarrow 5} f(x) \text { does not exist. }
\end{array} . \begin{array}{l}
\lim _{x \rightarrow-6} f(x) \text { does } \\
\text { not exist. }
\end{array}\right.
\end{aligned}
$$

Example 3: Graph the function. Use the graph to determine $\lim _{x \rightarrow 2} f(x)$ and $\lim _{x \rightarrow-1} f(x)$.

$$
f(x)=\left\{\begin{array}{cc}
x-1 & \text { if } x \geq 2 \\
x^{2} & \text { if } x<2
\end{array}\right.
$$

$\lim _{x \rightarrow 2} f(x)$ does not exist

$$
\lim _{x \rightarrow-1} f(x)=1
$$

Finding limits numerically:
Example 4: For the function $f(x)=\frac{x-5}{x^{2}-25}$, make a table of function values corresponding to values of x near 5 .

Use the table to estimate the value of $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-25}$.
From table, it appears

$$
\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-25}=0.1
$$

x	$f(x)=\frac{x-5}{x^{2}-25}$
4.8	0.10204
4.9	0.10101
4.95	0.1005
4.99	0.1001
4.999	0.10001
5.001	0.09999
5.01	0.099
5.05	0.0995
5.1	0.09901
5.2	0.09804

Example 5: Make a table of values and use it to estimate $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$.

$\underline{\text { Common reasons }} \lim _{x \rightarrow c} f(x)$ may not exist:

1. $f(x)$ approaches a different value when approached from the left of c, compared to when approached from the right of c.
2. $f(x)$ increases or decreases without bound as x approaches c.
3. $f(x)$ oscillates between two values as x approaches c.

The formal (epsilon-delta) definition of a limit:

Definition:

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$, there is a number $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

Example 6:

Example 7:
$f\left(x_{2}\right)$ is not within \in of L.
Here, $\lim _{x \rightarrow a} f(x) \neq L$

Example 8: How close to 3 must we take x so that $6 x-7$ is within 0.1 of 11 ?

$$
\begin{aligned}
6 x-7 & =11.1 \\
6 x & =18.1 \\
x & =\frac{18.1}{6} \approx 3.01 \overline{6} \\
6 x-7 & =10.9 \\
6 x= & 17.9 \\
x & =\frac{17.9}{6} \approx 2.98 \overline{3}
\end{aligned}
$$

x must be within $0.01 \overline{6}$ of 3 , (choose $\&<0.01 \overline{6}$)
Example 9: How close to 4 must we take x so that $x^{2}-2$ is within 0.01 of 14?

Choose of <0.001249805

$$
\begin{aligned}
x^{2}-2 & =14.01 \\
x^{2} & =16.01 \\
x & \approx 4.001249805 \\
x^{2}-2 & =13.99 \\
x^{2} & =15.99 \\
x & \approx 3.998749805 \\
4-x & \approx 0.0012501954
\end{aligned}
$$

Example 10: Prove that $\lim _{x \rightarrow 4}(2 x-5)=3$ using the definition of a limit.

Scratchwork:
Let $\epsilon>0$.
we wort $|(2 x-5)-3|<\epsilon$.

$$
\begin{aligned}
|2 x-8| & <\epsilon \\
|2(x-4)| & <\epsilon \\
2|x-4| & <\epsilon \\
|x-4| & <\frac{\epsilon}{2}
\end{aligned}
$$

So, let $\delta=\frac{\epsilon}{2}$.

Proof:
Let $\epsilon>0$. Then choose $\delta=\frac{\epsilon}{2}$.
Suppose $0<|x-4|<\delta$.
(We now need to show that $|f(x)-L|<\epsilon$)

$$
\begin{aligned}
|(2 x-5)-3|=|2 x-8|=2|x-4|<28 & =2\left(\frac{\epsilon}{2}\right) \\
& =\epsilon
\end{aligned}
$$

Example 11: Prove that $\lim _{x \rightarrow-3}(5 x+1)=-14$ using the definition of a limit.

Scratchwork:
we want

$$
\begin{aligned}
|f(x)-L| & =|(5 x+1)-(-14)| \\
& =|5 x+15| \\
& =|5(x+3)| \\
& =\underbrace{5|x+3|}_{c} \mid
\end{aligned}
$$

This results in
$\left.\begin{array}{rl} & |x+3|<\frac{\epsilon}{5} \\ & \text { Same as }(\underbrace{x-(-3)}_{x-a})\end{array}<\frac{\epsilon}{5}\right)$
So, we choose $c=5$ and let $\delta=\frac{\epsilon}{5}$.

Proof: Let $\epsilon>0$. Then choose $\delta=\frac{\epsilon}{5}$. Suppose $0<|x+3|<\delta$.
Then $|(5 x+1)-(-14)|=|5 x+1+14|=|5 x+15|$

$$
=|5(x+3)|=5|x+3|<5 g=5\left(\frac{\epsilon}{5}\right)=\epsilon
$$

Example 12: Prove that $\lim _{x \rightarrow 3} x^{2}=9$ using the definition of a limit.

Seratchwork:
we want $\left|x^{2}-9\right|<\epsilon$

$$
\begin{aligned}
& |(x+3)(x-3)|<\epsilon \\
& \underbrace{(x+3)}||x-3|<\epsilon
\end{aligned}
$$

Weill eventually supposes that $|x-3|<\delta$.
suppose that x is within 1 unit of 3 .

$$
\left.\begin{array}{l}
2<x<4 \\
+3<x+3<7 \\
5<7 \leqslant \\
|x+3|<7 \\
\text { Let } c=7 \\
\text { Let } y=\text { or }
\end{array}\right)
$$

Proof: Let $\epsilon>0$.
Let $\delta=\min \left\{1, \in \frac{\epsilon}{7}\right\}$.
Suppose $0<|x-3|<\delta$.
Then $|x-3|<1$.

Example 13: Prove that $\lim _{x \rightarrow 2}\left(x^{2}-x+6\right)=8$ using the definition of a limit. $\longrightarrow<7|x-3|$

Seratchwark:

$$
\begin{aligned}
& |f(x)-L|=\left|\left(x^{2}-x+6\right)-8\right| \\
& =\left|x^{2}-x-2\right| \\
& =|(x-2)(x+1)| \\
& =\underbrace{|x-2|}_{<\delta} \underbrace{|x+1|}_{<C}
\end{aligned}
$$

suppose x within 1 unit of 2 .
Then $\quad 1<x<3+1$

$$
2<x+1<3
$$

So $|x+1|<4$
Let $c=4$.

Proof: Let $\epsilon>0$.
Choose $g=\min \left\{l, \frac{\epsilon}{4}\right\}$.
Suppose $0<|x-2|<\delta$.
Then $|x-2|<1$.

$$
\begin{aligned}
& -1<x-2<1+2 \\
& 1<x<3 \\
& 1<x+1
\end{aligned}
$$

so $2<x+1<4$ and thus $|x+1|<4$.

$$
\begin{aligned}
& \left|\left(x^{2}-x+6\right)-8\right|=\left|x^{2}-x-2\right|=|(x+1)(x-2)| \\
& \quad=|x+1||x-2|<4|x-2|<4 \delta \leq 4\left(\frac{\epsilon}{4}\right)=\epsilon .
\end{aligned}
$$

Important Note: This should be $a \leq$ sign,
as x could be either equal to $\frac{\epsilon}{4}\left(\right.$ if $\frac{\epsilon}{4}<1$) or x could be equal to \backslash (thus less than $\frac{\epsilon}{4}$) if $\frac{\epsilon}{4}>1$.

