2.2: Basic Differentiation Rules and Rates of Change

Basic differentiation formulas:

- 1. $\frac{d}{dx}(c) = 0$ for any constant c.
- 2. $\frac{d}{dx}(x^n) = nx^{n-1}$ for any real number n. (Power Rule)
- 3. $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$
- 4. $\frac{d}{dx}[f(x)+g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$
- 5. $\frac{d}{dx}[f(x)-g(x)] = \frac{d}{dx}[f(x)] \frac{d}{dx}[g(x)]$

Find the derivative of f(x) = 7.

Example 2: Find the derivative of
$$f(x) = 5x^3 - x^7 + 12x$$
.
 $f'(\lambda) = 15x^2 - 7x^4 + 12x^4$
 $= 15x^2 - 7x^6 + 12x^4$
 $= 15x^2 - 7x^6 + 12(1)$
 $= 15x^2 - 7x^6 + 12(1)$

$$= 15x^{2} - 7x^{6} + 12x^{9}$$

$$= 15x^{2} - 7x^{2} + 12x^{9}$$

$$= 15x^{2} - 7x^{2} + 12x^{2}$$

$$Ex^{1/2}$$
: $f(x) = x^{4}$
 $f'(x) = 4x^{3}$
 $f'(x) = 4x^{3}$
 $F'(x) = 4x^{4-1}$
 $f(x) = 3x^{4}$
 $f'(x) = 3x^{4}$
 $f'(x) = 3\frac{d}{dx}(x^{4})$
 $f'(x) = 3\frac{d}{dx}(x^{4})$
 $f'(x) = 3\frac{d}{dx}(x^{4})$

$$\sqrt[n]{x} = x^{\frac{1}{n}}$$

$$\frac{1}{x^n} = x^{-n}$$

Example 4: Find the derivative of $f(x) = \sqrt[5]{x} + \frac{1}{x^2}$.

valive of
$$f(x) = \sqrt{x} + \frac{1}{x^2}$$
.

$$f(x) = \sqrt{5} + \sqrt{2}$$

$$f'(x) = \frac{1}{5} \times -2 \times = \sqrt{\frac{1}{5\sqrt{5}}}$$

$$3 = \sqrt{\frac{2}{55\sqrt{x^4}}} - \frac{2}{\sqrt{3}}$$

Example 5: Find the derivative of
$$f(x) = \frac{2}{\sqrt[4]{x}}$$
.

$$f(x) = 2x^{\frac{1}{4}}$$

$$-\frac{1}{4} - 1$$

$$f(x) = 2(-\frac{1}{4})x$$

$$= -\frac{1}{2}x^{\frac{1}{4}}$$

$$=\begin{bmatrix} -\frac{5}{4} \\ -\frac{1}{2} \\ \times \end{bmatrix} = \begin{bmatrix} -\frac{5}{2} \\ 2 \end{bmatrix}$$

Example 6: Find the derivative of
$$h(x) = (\sqrt{x})^5$$
.

$$h(x) = (\sqrt{x})^5 = \sqrt{x}$$

$$h'(x) = \frac{5}{2} \sqrt{x}$$

Example 7: Find the derivative of $f(x) = -\sqrt[3]{6x^4}$.

ive of
$$f(x) = -\sqrt[3]{6}x^4$$
.
 $f(x) = -\sqrt[3]{6}\sqrt[3]{x^4} = -\sqrt[3]{6}\sqrt[4]{3}$
 $f'(x) = -\sqrt[3]{6}(\frac{4}{3})\sqrt[4]{3} = -\sqrt[43]{6}\sqrt[4]{3}$

Example 8: Find the derivative of $f(x) = \frac{10}{x^4}$.

$$f(x) = 10x^{-4}$$

$$f'(x) = \begin{bmatrix} -40x^{-5} \\ -40x^{5} \end{bmatrix} = \begin{bmatrix} -40 \\ -x^{5} \end{bmatrix}$$

Example 9: Find the derivative of
$$g(x) = \frac{2\sqrt{x}}{7}$$
.

$$q(x) = \frac{1}{7}x$$

$$q(x) = \frac{1}{2} \cdot \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{7}x^{\frac{1}{2}} = \frac{1}{7}x^{\frac{1}{2}}$$

$$= \frac{7x^{1/2}}{7\sqrt{x}}$$

Example 10: Find the derivative of
$$f(t) = \frac{3}{4t^2} - \sqrt[3]{7t}$$
.

Example 10: Find the derivative of
$$f(t) = \frac{3}{4t^2} - \sqrt[3]{7t}$$
.
 $f(t) = \frac{3}{4}t^{-2} - (7t)^{1/3}$

$$= \frac{3}{4}t^{-2} - 7^{\frac{1}{3}}t^{\frac{1}{3}}$$

Find the derivative of
$$f(t) = \frac{3}{4t^2} - \sqrt[3]{7t}$$
.

$$= \frac{3}{4} + \frac{7}{4} - (7t)^{\frac{1}{3}} + \frac{3}{4} = \frac{3}{4} + \frac{7}{4} - \frac{3}{4} + \frac{3}{4} = \frac{3}{4} + \frac{3}{4} - \frac{3}{4} + \frac{3}{4} = \frac{3}{4} + \frac{3}{4} +$$

Example 11: Find the derivative of
$$f(u) = \frac{7u^5 + u^2 - 9\sqrt{u}}{u^2}$$
. $\left[= -\frac{3}{2t^3} - \frac{3}{3} \frac{7}{2t^3} - \frac{3}{3} \frac{7}{2t^3} \right]$

$$f(u) = \frac{7u^{5}}{u^{2}} + \frac{u^{2}}{u^{2}} - \frac{9u^{1/2}}{u^{2}}$$

$$= 7u^{3} + 1 - 9u^{2}$$

$$= 7u^{3} + 1 - 9u^{3} - \frac{3}{2}u$$

$$= 7u^{3} + 1 - 9u^{3} - \frac{3}{2}u$$

$$= 2u^{2} + 0 - 9(-\frac{3}{2}u^{2}) - \frac{3}{2}u^{2}$$

$$= 2u^{2} + \frac{27}{2}u^{-\frac{3}{2}}(2) - 2u^{2} + \frac{27}{2\sqrt{u^{3}}}$$

$$= 2u^{2} + \frac{27}{2}u^{2} - \frac{3}{2}u^{2} - \frac{27}{2}u^{2} - \frac{27}{$$

 $=-\frac{3}{2t^3}-\frac{1}{3}\sqrt[3]{\frac{7}{t^2}}$

Example 12: Find the equation of the tangent line to the graph of $f(x) = 3x - x^2$ at the point

Check:
$$f(-2) = 3(-2) - (-2)^2$$

= -6 - 4 = -10

$$f'(x) = 3-2x$$

 $5lape: f'(-2) = 3-2(-2)$
 $= 3 + 4 = 7$

$$y-y_1 = m(x-x_1)$$

 $y-(-10) = 7(x-(-2))$
 $y+10 = 7(x+2)$
 $y = 7x+14-10$
 $y = 7x+4$

Note:
$$\frac{d(kx) = k(lx^{\circ})}{dx} = k(l)$$

Example 13: Find the point(s) on the graph of $f(x) = x^2 + 6x$ where the tangent line is Slope of a horizontal line is 0, so set f(x)=0. f'(x) = 2x+6 Set f'(x)=0: 2x+6=0 2x = -6 x = -3Find y-value: F(-3)= (-3)2+6(-3) <u>= 9</u> - 18 = -9 is horizontal at the point (-3,-9). <u>Definition</u>: The *normal line* to a curve at the point *P* is defined to be the line passing through *P* 의(xh) = nxhthat is perpendicular to the tangent line at that point. (arthogonal) Example 14: Determine the equation of the normal line to the curve $y = \frac{1}{x}$ at the point $\left(3, \frac{1}{3}\right)$. $y' = \frac{dy}{dx} = \frac{d}{dx}(x') = -1x^2 = -\frac{1}{x^2}$ Slope of tangent line = $\frac{dy}{dx}$ = $-\frac{1}{x^2}$ = $-\frac{1}{3}$ = $-\frac{1}{9}$ Slope of normal line

is + = 9.

slopes of perpendicular lines and
apposite reciprocals of earl y-3=9x-27 **Derivatives of trigonometric functions:** $\frac{d}{dx}(\csc x) = -\csc x \cot x$ $y = 9x - \frac{81}{3} + \frac{1}{3}$ $\frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\sec x) = \sec x \tan x$ $\frac{d}{dx}(\cot x) = -\csc^2 x$ $\frac{d}{dx}(\tan x) = \sec^2 x$

Derivatives of all the co-Functions have a

Example 15: Find the derivative of
$$y = 2\cos x - 4\tan x$$
.

$$\frac{dy}{dx} = 2(-\sin x) - 4(\sec^2 x) = (-2\sin x - 4\sec^2 x)$$

Example 16: Find the derivative of
$$y = \frac{\sin x}{4} + 3x^4 + \pi^2$$
.

$$y = \frac{1}{4} \sin \chi + 3 \chi^4 + \pi^2$$

$$\frac{dy}{dx} = \frac{1}{4} \cos x + 12x^3 + 0$$

$$= \frac{1}{4} \cos x + 12x^3$$

Example 17: Determine the equation of the tangent line to the graph of $y = \sec x$ at the point

where
$$x = \frac{\pi}{4}$$
.

$$\frac{dy}{dx} = \frac{d}{dx} (secx) = secx tan x$$

$$= \sqrt{2} \quad ()$$

$$= \sqrt{2} \quad (eciprocal of \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}})$$

Meed the point:

Fire y-value:
$$y|_{x=\sqrt{x}} = \sec x|_{\sqrt{x}} = \sec x|_{\sqrt{x}} = \sqrt{2}$$
 $y-y:=m(x-x_i)$

Example 18: Find the points on the curve $y = \tan x - 2x$ where the tangent line is horizontal.

Find dy and set it equal to O.

$$\frac{dy}{dx} = \frac{d}{dx}(\tan x - 2x) = \sec^2 x - 2 \qquad x = \frac{\pi}{4} + \frac{|\mathbf{k}\pi|}{2},$$

Set
$$\frac{\partial u}{\partial x} = 0$$
: $\sec^2 x - 2 = 0$

$$\sec^2 x = 2$$

$$\sec x = \pm i$$

$$\sec^2\chi = 2$$

$$Sec x = \pm \sqrt{2}$$

$$\cos x = \pm \frac{1}{\sqrt{2}}$$

where k is any integer

 $A'(c) = \frac{1}{4\pi} (2c)$ $= \frac{2c}{4\pi} = \frac{c}{2\pi}$

The derivative as a rate of change:

The <u>average rate of change</u> of y = f(x) with respect to x over the interval $[x_0, x_1]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}, \text{ where } h = x_1 - x_0 \neq 0.$$

This is the same as the slope of the secant line joining points $P(x_0, f(x_0))$ and $Q(x_1, f(x_1))$.

The <u>instantaneous rate of change</u> (or, equivalently, just the <u>rate of change</u>) of f when x = a is the slope of the tangent line to graph of f at the point (a, f(a)).

Therefore, the instantaneous rate of change is given by the <u>derivative</u> f'.

Example 19: Find the average rate of change in volume of a sphere with respect to a sphere with respect to (a) the diameter; and change $\frac{L}{L}$ are $\frac{L}{L}$ and $\frac{L}{L}$ are $\frac{L}{L}$ and $\frac{L}{L}$ are $\frac{L}{L}$ and $\frac{L}{L}$ are \frac{L}

Velocity:

If the independent variable represents *time*, then the derivative can be used to analyze motion.

If the function s(t) represents the position of an object, then the derivative $s'(t) = \frac{ds}{dt}$ is the velocity of the object.

(The velocity is the instantaneous rate of change in distance. The average velocity is the average rate of change in distance.)

Example 21: A person stands on a bridge 40 feet above a river. He throws a ball vertically upward with an initial velocity of 50 ft/sec. Its height (in feet) above the river after t seconds is $s = -16t^2 + 50t + 40.$

- a) What is the velocity after 3 seconds?
- b) How high will it go?
- c) How long will it take to reach a velocity of 20 ft/sec?
- d) When will it hit the water? How fast will it be going when it gets there?

© Set
$$\Delta(t) = 20$$
:
$$-32t + 50 = 20$$

$$-32t = -30$$

$$t = -30 = \frac{15}{16}$$

$$t = \frac{15}{16} \text{ sec}$$

$$v(t) = \frac{dv}{dt} = v(t) = -32t + 50$$

(a)
$$\Delta'(3) = -32(3) + 50 = -96 + 50$$

$$= -46 + 50$$

$$= -46 + 50$$

$$= -46 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96 + 50$$

$$= -96$$

(b) of maximum height, velocity =
$$\Delta'(t) = 0$$
.
Set $\Delta'(t) = 0$: $-32t + 50 = 0$
 $50 = 32t$

When it reaches the water,
$$\Delta(t) = 0 = -16t^2 + 50t + 40$$

$$t = \frac{-50 \pm 160^2 - 4(-16)(40)}{2(-16)} \Rightarrow t \approx -0.66$$
 sec

How fast is it going?

Plug into

Plug into

2.2.8 = -32(3.785) + 50Li(t) = -32t + 50 2.2.8

Example 22: Suppose a bullet is shot straight up at an initial velocity of 73 feet per second. If air resistance is neglected, its height from the ground (in feet) after t seconds is given by $h(t) = -16.1t^2 + 73t$.

- a. The velocity after 2 seconds.
- b. How high will the bullet go?
- c. When will the bullet reach the ground?
- d. How fast will it be traveling when it hits the ground?

Example 23: Suppose the position of a particle is given by $f(t) = t^4 - 32t + 7$. What is the velocity after 3 seconds? When is the particle at rest?