2.2: Basic Differentiation Rules and Rates of Change

Basic differentiation formulas:

1. $\frac{d}{d x}(c)=0$ for any constant c.
2. $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ for any real number n. (Power Rule)
3. $\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]$
4. $\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]$
5. $\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x}[f(x)]-\frac{d}{d x}[g(x)]$

Example 1: Find the derivative of $f(x)=7$.

Example 2: Find the derivative of $f(x)=5 x^{3}-x^{7}+12 x$.

$$
\begin{aligned}
f^{\prime}(x) & =15 x^{3-1}-7 x^{7-1}+12 x^{1-1} \\
& =15 x^{2}-7 x^{6}+12 x^{0} \\
& =15 x^{2}-7 x^{6}+12(1) \\
& =15 x^{2}-7 x^{6}+12
\end{aligned}
$$

$=15 x^{2}-7 x^{6}+1$

$$
\begin{aligned}
g(x) & =x^{17}+x^{3 / 2} \\
g^{\prime}(x) & =17 x^{16}+\frac{3}{2} x^{2}-1 \\
& =17 x^{16}+\frac{3}{2} x^{\frac{1}{2}}
\end{aligned}
$$

Example 3: Find the derivative of $g(x)=x+x^{1 / 2}$.

Recall:

$$
\begin{aligned}
& \sqrt[n]{x}=x^{\frac{1}{n}} \\
& \frac{1}{x^{n}}=x^{-n}
\end{aligned}
$$

Example 4: Find the derivative of $f(x)=\sqrt[5]{x}+\frac{1}{x^{2}}$.
 Rear Se:

$$
\begin{aligned}
& f(x)=x^{\frac{1}{5}}+x^{-2} \\
& f^{\prime}(x)=\frac{1}{5} x^{-4 / 5}-2 x^{-3}=\frac{1}{5 \sqrt[5]{x^{4}}}-\frac{2}{x^{3}}
\end{aligned}
$$

Example 5: Find the derivative of $f(x)=\frac{2}{\sqrt[4]{x}}$.

$$
\begin{aligned}
& f(x)=2 x^{-\frac{1}{4}} \\
& f^{\prime}(x)=-\frac{1}{4}-1 \\
& =-\frac{1}{2} x-\frac{5}{4}
\end{aligned}
$$

Example 6: Find the derivative of $h(x)=(\sqrt{x})^{5}$.

$$
\begin{aligned}
& h(x)=\left(x^{\frac{1}{2}}\right)^{5}=x^{5 / 2} \\
& h^{\prime}(x)=\frac{5}{2} x^{\frac{5}{2}-1} \frac{5}{2} x^{3 / 2}
\end{aligned}
$$

Example 7: Find the derivative of $f(x)=-\sqrt[3]{6 x^{4}}$.

Example 8: Find the derivative of $f(x)=\frac{10}{x^{4}}$.

$$
\begin{aligned}
& f(x)=10 x^{-4} \\
& f^{\prime}(x)=-40 x^{-5}=-\frac{40}{x^{5}}
\end{aligned}
$$

Example 9: Find the derivative of $g(x)=\frac{2 \sqrt{x}}{7}$.

$$
\begin{aligned}
g(x) & =\frac{2}{7} x^{1 / 2} \\
g^{\prime}(x) & =\frac{2}{7} \cdot \frac{1}{2} x^{\frac{1}{2}-1}=\frac{2}{14} x^{\frac{1}{2}-\frac{2}{2}}=\frac{1}{7} x^{-\frac{1}{2}}
\end{aligned}=\frac{1}{7 x^{1 / 2}}, ~ \frac{1}{7 \sqrt{x}}
$$

$$
\begin{aligned}
& \text { Example 10: Find the derivative of } f(t)=\frac{3}{4 t^{2}}-\sqrt[3]{7 t} \\
& \begin{aligned}
f(t) & =\frac{3}{4} t^{-2}-(7 t)^{1 / 3} \\
& =\frac{3}{4} t^{-2}-f^{\prime}(t)=\frac{3}{4}\left(-2 t^{-3}\right)-\sqrt[3]{7}\left(\frac{1}{3} t^{\frac{1}{3}}\right) \\
& =\frac{3}{4 / 2} \cdot \frac{-t^{\prime}}{t^{3}}-\frac{\sqrt[3]{7}}{3} t^{-2 / 3} \\
& =-\frac{3}{2 t^{3}}-\frac{\sqrt[3]{7}}{3 t^{2 / 3}}
\end{aligned}
\end{aligned}
$$

$$
\frac{\frac{3}{2 t^{3}}-\frac{11}{3 t^{2 / 3}}}{-3-3-\sqrt[3]{7}}
$$

$$
\begin{aligned}
f(u) & =\frac{7 u^{5}}{u^{2}}+\frac{u^{2}}{u^{2}}-\frac{9 u^{1 / 2}}{u^{2}} \\
& =7 u^{3}+1-9 u^{\frac{1}{2}-2} \\
& =7 u^{3}+1-9 u^{-3 / 2} \\
f^{\prime}(u) & =\frac{21 u^{2}+0-9\left(-\frac{3}{2} u^{-\frac{3}{2}-1}\right)}{27-3 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& 2 t^{3} \\
& =-\frac{3}{2 t^{3}}-\frac{1}{3} \sqrt[3]{t^{2}} \\
& \hline \frac{7}{t^{2}}
\end{aligned}
$$

Note: derivative of a constant is 0 .
If $y=k$, then $y=k x^{0}$
so $y^{\prime}=0 \cdot k x^{-1}=0$
Example 12: Find the equation of the tangent line to the graph of $f(x)=3 x-x^{2}$ at the point $(-2,-10)$.

$$
\text { Check: } \begin{aligned}
f(-2) & =3(-2)-(-2)^{2} \\
& =-6-4=-10
\end{aligned}
$$

$$
f^{\prime}(x)=3-2 x
$$

Slope: $f^{\prime}(-2)=3-2(-2)$

$$
\begin{gathered}
=3+4=7 \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-10)=7(x-(-2)) \\
y+10=7(x+2) \\
y=7 x+14-10 \\
y=7 x+4
\end{gathered}
$$

Example 13: Find the points) on the graph of $f(x)=x^{2}+6 x$ where the tangent line is horizontal. Slope of a horizontal line is 0 , so set $f^{\prime}(x)=0$.

$$
f^{\prime}(x)=2 x+6
$$

Set $f^{\prime}(x)=0: 2 x+6=0$

$$
\begin{array}{r}
2 x=-6 \\
x=-3
\end{array}
$$

Find y-value: $f(-3)=(-3)^{2}+6(-3)$

$$
=9-10=-9
$$

It is horizontal at the point $(-3,-9)$.
Definition: The normal line to a curve at the point P is defined to be the line passing through P that is perpendicular to the tangent line at that point.
(orthogonal)

$$
\begin{aligned}
& y=x^{-1} \\
& y^{\prime}=\frac{d y}{d x}=\frac{d}{d x}\left(x^{-1}\right)=-1 x^{-2}=-\frac{1}{x^{2}}
\end{aligned}
$$

$d x$ means take the derivative
"with respect to x "

> Slope of normal line

Equ of line: $y-y_{1}=m\left(x-x_{1}\right)$ (slopes of is perpendicular lines are $=$ sect

Derivatives of trigonometric functions:

$$
\begin{aligned}
& y-y_{1}=m(x-x) \\
& y-\frac{1}{3}=9(x-3) \\
& y-\frac{1}{3}=9 x-27
\end{aligned}
$$

$\frac{d}{d x}(\sin x)=\cos x$	$\frac{d}{d x}(\csc x)=-\csc x \cot x$	$y=9 x-\frac{81}{3}+\frac{1}{3}$
$y=9 x-\frac{80}{3}$		

Notice: Derivatives of all the cofunctions have a minus sign.

Example 15: Find the derivative of $y=2 \cos x-4 \tan x$.

$$
\begin{aligned}
& \text { nd the derivative of } y=2 \cos x-4 \tan x \\
& \frac{d y}{d x}=2(-\sin x)-4\left(\sec ^{2} x\right)=-2 \sin x-4 \sec ^{2} x
\end{aligned}
$$

Example 16: Find the derivative of $y=\frac{\sin x}{4}+3 x^{4}+\pi^{2}$.

$$
\begin{aligned}
& y=\frac{1}{4} \sin x+3 x^{4}+\pi^{2} \\
& \frac{d y}{d x}=\frac{1}{4} \cos x+12 x^{3}+0 \\
& =\frac{1}{4} \cos x+12 x^{3}
\end{aligned}
$$

Example 17: Determine the equation of the tangent line to the graph of $y=\sec x$ at the point where $x=\frac{\pi}{4}$.

$$
\frac{d y}{d x}=\frac{d}{d x}(\sec x)=\sec x \tan x
$$

Need the point:

$$
\begin{aligned}
& y-y_{1}=m\left(x_{-}-x_{1}\right) \\
& y=(1)-\pi)
\end{aligned}
$$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-\sqrt{2}=\sqrt{2}\left(x-\frac{\pi}{4}\right) \Rightarrow y=\sqrt{2} x-\frac{\pi \sqrt{2}}{4}+\sqrt{2}
\end{gathered}
$$

Example 18: Find the points on the curve $y=\tan x-2 x$ where the tangent line is horizontal.

Find $\frac{d y}{d x}$ and set it equal to 0 .

$$
\frac{d y}{d x}=\frac{d}{d x}(\tan x-2 x)=\sec ^{2} x-2
$$

Set $\frac{d y}{d x}=0: \quad \sec ^{2} x-2=0$

$$
\sec ^{2} x=2
$$

$$
\sec x= \pm \sqrt{2}
$$

$$
\cos x= \pm \frac{1}{\sqrt{2}}
$$

$$
\cos x= \pm \frac{\sqrt{2}}{2}
$$

$\ln [0,2 \pi], x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$ k is any
integer

The derivative as a rate of change:

The average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{0}, x_{1}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}, \text { where } h=x_{1}-x_{0} \neq 0 .
$$

This is the same as the slope of the secant line joining points $P\left(x_{0}, f\left(x_{0}\right)\right)$ and $Q\left(x_{1}, f\left(x_{1}\right)\right)$.

The instantaneous rate of change (or, equivalently, just the rate of change) of f when $x=a$ is the slope of the tangent line to graph of f at the point $(a, f(a))$.

Therefore, the instantaneous rate of change is given by the derivative f^{\prime}.

Example 19: Find the average rate of change in volume of a sphere with respect to its radius r as r changes from 3 to 4 . Find the instantaneous rate of change when the radius is 3 .

Volume

Velocity:
If the independent variable represents time, then the derivative can be used to analyze motion.

If the function $s(t)$ represents the position of an object, then the derivative $s^{\prime}(t)=\frac{d s}{d t}$ is the velocity of the object.
(The velocity is the instantaneous rate of change in distance. The average velocity is the average rate of change in distance.)

Example 21: A person stands on a bridge 40 feet above a river. He throws a ball vertically upward with an initial velocity of $50 \mathrm{ft} / \mathrm{sec}$. Its height (in feet) above the river after t seconds is $s=-16 t^{2}+50 t+40$.
a) What is the velocity after 3 seconds?
b) How high will it go?
c) How long will it take to reach a velocity of $20 \mathrm{ft} / \mathrm{sec}$?
d) When will it hit the water? How fast will it be going when it gets there?

(c) Set $s^{\prime}(t)=20$:

$$
\begin{aligned}
-32 t & +50=20 \\
-32 t & =-30 \\
t & =\frac{-30}{-32}=\frac{15}{16} \\
t & =\frac{15}{16} \mathrm{sec}
\end{aligned}
$$

(5) at maximum height, velocity $=s^{\prime}(t)=0$. set $s^{\prime}(t)=0:-32 t+50=0$

$$
50=32 t
$$

$$
\frac{50}{32}=t
$$

At $t=\frac{25}{16}$ seconds, its at

$$
t=\frac{25}{16}
$$

$$
\begin{aligned}
& \text { max hight. } \\
& A\left(\frac{25}{16}\right)=-16\left(\frac{25}{16}\right)^{2}+50\left(\frac{25}{16}\right)+4 \\
& =79.0625 \mathrm{ft}
\end{aligned}
$$

(d) When it reaches the

$$
\text { water, } \begin{aligned}
& \Delta(t)=0=-16 t^{2}+50 t+40 \\
& t=\frac{-50 \pm \sqrt{(50)^{2}-4(-16)(40)}}{2(-16)} \Rightarrow t \approx \frac{t}{t} \approx 2.785 \mathrm{sec} \\
& t \approx-0.66 \mathrm{sec}
\end{aligned}
$$

Example 22: Suppose a bullet is shot straight up at an initial velocity of 73 feet per second. If air resistance is neglected, its height from the ground (in feet) after t seconds is given by $h(t)=-16.1 t^{2}+73 t$.
a. The velocity after 2 seconds.
b. How high will the bullet go?
c. When will the bullet reach the ground?
d. How fast will it be traveling when it hits the ground?

Example 23: Suppose the position of a particle is given by $f(t)=t^{4}-32 t+7$. What is the velocity after 3 seconds? When is the particle at rest?

