2.3: Product and Quotient Rules and Higher Order Derivatives

The Product Rule:

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

"the first times the derivative of the second plus the second times the derivative of the first"

Example 1: Find the derivative of $f(x)=x^{7}\left(4 x^{3}\right)$.
Product Rule:

$$
\begin{aligned}
f^{\prime}(x) & =x^{7} \frac{d}{d x}\left(4 x^{3}\right)+\left(4 x^{3}\right) \frac{d}{d x}\left(x^{7}\right) \\
& =x^{7}\left(12 x^{2}\right)+4 x^{3}\left(7 x^{6}\right) \\
& =12 x^{9}+28 x^{9} \\
& =40 x^{9}
\end{aligned}
$$

Without Product Rule:

$$
\begin{aligned}
& f(x)=x^{7}\left(4 x^{3}\right)=4 x^{10} \\
& f^{\prime}(x)=40 x^{9}
\end{aligned}
$$

Example 2: Find the derivative of $f(x)=\left(4 x^{3}+x^{2}-2\right)\left(x^{4}+8\right)$.

$$
\begin{aligned}
f^{\prime}(x) & =\left(4 x^{3}+x^{2}-2\right) \frac{d}{d x}\left(x^{4}+8\right)+\left(x^{4}+8\right) \frac{d}{d x}\left(4 x^{3}+x^{2}-2\right) \\
& =\left(4 x^{3}+x^{2}-2\right)\left(4 x^{3}\right)+\left(x^{4}+8\right)\left(12 x^{2}+2 x\right) \\
& =16 x^{6}+4 x^{5}-8 x^{3}+12 x^{6}+\frac{2 x^{5}+96 x^{2}+16 x}{}
\end{aligned}
$$

Example 3: Find the derivative of $f(x)=\sqrt{x}\left(x^{5}-3 x^{2}+12 x\right)$.

$$
+16 x
$$ $+16 x$

$$
\begin{aligned}
& f(x)=x^{1 / 2}\left(x^{5}-3 x^{2}+12 x\right) \\
& f^{\prime}(x)=x^{\frac{1}{2}} \frac{d}{d x}\left(x^{5}-3 x^{2}+12 x\right)+\left(x^{5}-3 x^{2}+12 x\right) \frac{d}{d x}\left(x^{\frac{1}{2}}\right) \\
&= x^{\frac{1}{2}}\left(5 x^{4}-6 x+12\right)+\left(x^{5}-3 x^{2}+12 x\right)\left(\frac{1}{2} x^{-\frac{1}{2}}\right) \\
& \text { then simplify. }
\end{aligned}
$$

then simplify.
Example 4: Find the derivative of $\left(4 x^{3}+1\right)\left(\sqrt{x}+\frac{1}{x}-2 x\right)$.

The Quotient Rule:

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

Without Quotient Rule:
Example 5: Find the derivative of $f(x)=\frac{-x^{5}}{4 x^{3}}$.
Using Quotient Rule:

$$
\begin{aligned}
& \text { Without } \\
& f(x)=\frac{-x^{5}}{4 x^{3}}=-\frac{1}{4} x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Using Quotient Rule: }}{f^{\prime}(x)}=\frac{4 x^{3} \frac{d}{d x}\left(-x^{5}\right)-\left(-x^{5}\right) \frac{d}{d x}\left(4 x^{3}\right)}{\left[4 x^{3}\right]^{2}} \quad f^{\prime}(x)=-\frac{1}{4} \quad(2 x)=-\frac{1}{2} x \\
& \operatorname{sam}^{3}\left(12 x^{2}\right)--20 x^{7}+12 x^{7}
\end{aligned}
$$

$$
=\frac{4 x^{3}\left(-5 x^{4}\right)+x^{5}\left(12 x^{2}\right)}{16 x^{6}}=\frac{-20 x^{7}+12 x^{7}}{16 x^{6}}=\frac{-8 x^{7}}{16 x^{6}}=-\frac{1}{2} x^{\operatorname{sam}}
$$

Example 6: Find the derivative of $g(x)=\frac{4-2 x^{3}}{x^{4}+3 x^{7}}$.

$$
\begin{aligned}
& \begin{aligned}
& g^{\prime}(x)=\frac{\left(x^{4}+3 x^{7}\right) \frac{d}{d x}\left(4-2 x^{3}\right)-\left(4-2 x^{3}\right) \frac{d}{d x}\left(x^{4}+3 x^{7}\right)}{\left(x^{4}+3 x^{7}\right)^{2}} \\
&=\frac{\left(x^{4}+3 x^{7}\right)\left(-6 x^{2}\right)-\left(4-2 x^{3}\right)\left(4 x^{3}+21 x^{6}\right)}{\left(x^{4}+3 x^{7}\right)^{2}} \\
&=\frac{-6 x^{6}-18 x^{9}-\left(16 x^{3}+84 x^{6}-8 x^{6}-42 x^{9}\right)}{\left(x^{4}+3 x^{7}\right)^{2}} \\
& \text { Example 7: Find the derivative of } f(x)=\frac{\sqrt{x}}{x^{3}-x^{4}} \\
&x)=\frac{-6 x^{6}-18 x^{9}-16 x^{3}-76 x^{6}+42 x^{9}}{\left(x^{4}+3 x^{7}\right)^{2}} \\
&= \frac{\left(x^{3}-x^{4}\right) \frac{d}{d x}\left(x^{\frac{1}{2}}\right)-x^{\frac{1}{2}} \frac{d}{d x}\left(x^{3}-x^{4}\right)}{\left(x^{3}-x^{4}\right)^{2}} \\
&\left(x^{4}\right)\left(\frac{1}{2} x^{-\frac{1}{2}}\right)-x^{\frac{1}{2}\left(3 x^{2}-4 x^{3}\right)} \\
&=\frac{24 x^{9}-82 x^{6}-16 x^{3}}{\left(x^{4}+3 x^{7}\right)^{2}} \\
&=\frac{2 x^{3}\left(12 x^{6}-41 x^{3}-8\right)}{\left(x^{4}\left(1+3 x^{3}\right)\right)^{2}} \\
& x^{8}\left(1+3 x^{3} x^{3}-8\right) \\
& 2\left(12 x^{6}-41 x^{3}-8\right) \\
& x^{5}\left(1+3 x^{3}\right)^{2}
\end{aligned}
\end{aligned}
$$

Example 8: Find the derivative of $f(x)=x^{2} \sin x$.

$$
\begin{aligned}
f^{\prime}(x) & =x^{2} \frac{d}{d x}(\sin x)+(\sin x) \frac{d}{d x}\left(x^{2}\right) \\
& =x^{2}(\cos x)+(\sin x)(2 x) \\
& =x^{2} \cos x+2 x \sin x=x(x \cos x+2 \sin x)
\end{aligned}
$$

Example 9: Find the derivative of $f(x)=x+\sin x \cos x$.

$$
\begin{aligned}
f^{\prime}(x) & =1+(\sin x) \frac{d}{d x}(\cos x)+(\cos x) \frac{d}{d x}(\sin x) \\
& =1+(\sin x)(-\sin x)+(\cos x)(\cos x) \\
& =\underbrace{1-\sin ^{2} x}_{\cos ^{2} x}+\cos ^{2} x
\end{aligned}
$$

Example 10: Find the derivative of $y=\frac{1-\cos x}{\sin x}$.

$$
\begin{aligned}
\frac{d y}{d x} & =y^{\prime}=\frac{d}{d x}(y)=\frac{(\sin x) \frac{d}{d x}(1-\cos x)-(1-\cos x) \frac{d}{d x}(\sin x)}{(\sin x)^{2}} \\
& =\frac{(\sin x)(0-(-\sin x))+(-1+\cos x)(\cos x)}{\sin ^{2} x} \\
& =\frac{1}{\left.\sin ^{2} x\right)\left(\sin ^{x}\right)-\cos x+\cos ^{2} x} \\
\sin ^{2} x & \frac{\sin ^{2} x-\cos x+\frac{\cos ^{2} x}{\sin ^{2} x}}{}
\end{aligned}
$$

Example 11: Prove that $\frac{d}{d x}(\csc x)=-\csc x \cot x$.
(Use the fact that

$$
\begin{aligned}
& \text { e the tact that } \\
& \frac{d}{d x}(\cos x)=-\sin x \text { and } \frac{d}{d x}(\sin x) \\
& \text { th the quotient rule) }
\end{aligned}
$$ along with the quotient rule) $=\cos x$,

$$
\begin{aligned}
& =\frac{1-\cos x}{\sin ^{2} x}=\frac{1-\cos x}{1-\cos ^{2} x} \\
& =\frac{1-\operatorname{sos} x}{(1+\cos x)(1-\cos x)} \\
& =\frac{1}{1+\cos x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}(\csc x)=\frac{d}{d x}\left(\frac{1}{\sin x}\right) \\
& =\frac{\sin x \frac{d}{d x}(1)-1 \frac{d}{d x}(\sin x)}{(\sin x)^{2}}=\frac{(\sin x)(0)-1(\cos x)}{\sin ^{2} x}=\frac{-\cos x}{\sin ^{2} x} \\
& =-\frac{1}{\sin x}\left(\frac{1}{\sin x}\right)=-\cos x \csc x=-\csc x \cot x
\end{aligned}
$$

Higher order derivatives:
Once the derivative of $f(x)$ if also a function, it is possible to find the derivative of $f^{\prime}(x)$ too. This is called the second derivative and is denoted $f^{\prime \prime}(x)$. The second derivative gives the instantaneous rate of change of the derivative. In other words, it tells us how fast the slope is changing.

Similarly, the derivative of $f^{\prime \prime}(x)$ can be calculated and this is called the third derivative f "' (x).
In general, we can keep calculating the derivative of the previous derivative. The nth derivative is found by taking the derivative n times. The nth derivative of f is denoted $f^{(n)}(x)$.

Other notation: $y^{\prime}, y^{\prime \prime}, y^{\prime \prime}, \ldots, y^{(n)}$

$$
\begin{aligned}
& \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \frac{d^{3} y}{d x^{3}}, \ldots, \frac{d^{n} y}{d x^{n}} \\
& D^{\prime} y, D^{2} y, D^{3} y, \ldots, D^{n} y
\end{aligned}
$$

Note:

$$
\operatorname{lit}_{\text {devi f: }}^{\frac{d}{d x}}(y)=\frac{d y}{d x}
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)=f^{(3)}(x) \\
&(y)= \frac{d y}{d x} \\
& \text { and } \frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}
\end{aligned}
$$

Example 12: Suppose that $y=-7 x^{5}+6 x^{4}-\frac{2}{x}$. Find $y^{\prime \prime \prime}$.

$$
\begin{aligned}
& y=-7 x^{5}+6 x^{4}-2 x^{-1} \\
& y^{\prime}=-35 x^{4}+24 x^{3}+2 x^{-2} \\
& y^{\prime \prime}=-140 x^{3}+72 x^{2}-4 x^{-3} \\
& y^{\prime \prime}=-420 x^{2}+144 x+12 x^{-4}=-420 x^{2}+144 x+\frac{12}{x^{4}}
\end{aligned}
$$

Example 13: Suppose that $f(x)=\sqrt[3]{x}$. Find the second and third derivatives.

$$
\begin{aligned}
& f(x)=x^{1 / 3} \\
& f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} \\
& f^{\prime \prime}(x)=\frac{1}{3}\left(-\frac{2}{3} x^{-5 / 3}\right)=-\frac{2}{9} x+\frac{2}{9} \\
& f^{\prime \prime \prime}(x)=-\frac{2}{9}\left(-\frac{5}{3} x^{-8 / 3}\right)=\frac{10}{27} x^{-8 / 3}=\frac{10}{27 \sqrt[3]{x^{8}}}
\end{aligned}
$$

Using derivatives to describe the motion of an object:
If the dependent variable t represents time, and the function $s(t)$ represents the position (distance from a particular point) of an object, then

- the velocity $v(t)$ is the first derivative $s^{\prime}(t)=\frac{d s}{d t}$.
- the acceleration $a(t)$ is the second derivative $s^{\prime \prime}(t)=\frac{d v}{d t}$.
- the jerk $j(t)$ is the third derivative $s^{\prime "}(t)=\frac{d a}{d t}$.
- the speed is the absolute value of the velocity $|v(t)|=\left|\frac{d s}{d t}\right|$.

Example 14: The position (in feet) of an object is given by $s(t)=t^{4}-32 t+7$, with t measured in seconds. Find functions representing the velocity, acceleration, and jerk. Find the velocity and acceleration after 1,2 , and 3 seconds.
Velocity: $s^{\prime}(t)=4 t^{3}-32$
acceleration: $s^{\prime \prime}(t)=12 t^{2}$
jerk: $\quad s^{\prime \prime \prime}(t)=24 t$

$$
\begin{aligned}
& s^{\prime}(1)= 4(1)^{3}-32=-28 \mathrm{ft} / \mathrm{sec} \\
& s^{\prime \prime}(1)=12(1)^{2}=12(\mathrm{ft} / \mathrm{sec}) / \mathrm{sec} \\
&=12 \mathrm{ft} / \mathrm{sec} / \mathrm{sec} \\
&=\frac{12 \mathrm{ft}}{\mathrm{sec}}=\frac{12 \mathrm{ft}}{\mathrm{sec}}\left(\frac{1}{\mathrm{sec}}\right) \\
&=12 \mathrm{ft} / \mathrm{sec}^{2}=12 \mathrm{ft} / \mathrm{s}^{2} \\
& s^{\prime}(2)=4(2)^{3}-32=0 \mathrm{ft} / \mathrm{sec} \\
& s^{\prime \prime}(2)=12(2)^{2}=48 \mathrm{ft} / \mathrm{s}^{2} \\
& s^{\prime}(3)=4(3)^{3}-32=76 \mathrm{ft} / \mathrm{s} \\
& s^{\prime \prime}(3)=12(3)^{2}=108 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

