2.4: The Chain Rule

The chain rule allows us to find the derivative of many more functions.

Note: if $y=x^{2}$, then $\frac{d y}{d x}=2 x$

Example 1: Suppose $g(x)=\left(x^{3}+2\right)^{2}$. Find $g^{\prime}(x)$.
One way: $g(x)=\left(x^{3}+2\right)\left(x^{3}+2\right)$ Using Chain rule:

$$
\begin{aligned}
g^{\prime}(x) & =6 x^{6}+4 x^{3}+4 \\
& =6 x^{2} \\
& =6 x^{2}\left(x^{3}+2\right) \\
& =6 x^{5}+12 x^{2}
\end{aligned}
$$

The chain rule lets us differentiate composite functions.

$$
\begin{aligned}
& g(x)=\left(x^{3}+2\right)^{2} \\
& g^{\prime}(x)=2\left(x^{3}+2\right) \frac{d}{d x}\left(x^{3}+2\right) \\
& =2\left(x^{3}+2\right)\left(3 x^{2}\right) \\
& \geq \underbrace{}_{\text {deriv. of }} \\
& \text { derivative of } \\
& \text { outside function, } \\
& \text { with respect to } \\
& \text { the inside function } \\
& \text { inside } \\
& \text { function, } \\
& \text { with rospett } \\
& \text { to } x
\end{aligned}
$$

The Chain Rule:
If f and g are both differentiable and $F(x)=f(g(x))$, then F is differentiable and

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Alternatively, if $y=f(u)$ and $u=f(x)$ are both differentiable functions, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

With the chain rule, we take the derivative of the "outer function" and multiply by the derivative of the "inner function".

Example 2: Find the derivative of $h(x)=\left(x^{3}+2\right)^{50}$.
Let

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \cdot \frac{d u}{d x} \\
& =50 u^{49}\left(3 x^{2}\right) \\
& =50\left(x^{3}+2\right)\left(3 x^{2}\right) \\
& =150 x^{2}\left(x^{3}+2\right)^{49}
\end{aligned}
$$

$$
\begin{aligned}
h(x) & =50\left(x^{3}+2\right)^{49} \frac{d}{d x}\left(x^{3}+2\right) \\
& =50\left(x^{3}+2\right)^{49}\left(3 x^{2}\right) \\
& =150 x^{2}\left(x^{3}+2\right)^{49}
\end{aligned}
$$

$$
\begin{aligned}
& u=x^{3}+2 \\
& y=u^{50}
\end{aligned}
$$

$$
s \text { 先 } \frac{1}{d x} \text { etc called }
$$ Leibniz notation

Example 3: Find the derivative of $f(x)=\sqrt{2 x^{3}-5 x}$.

$$
\begin{aligned}
f(x) & =\left(2 x^{3}-5 x\right)^{1 / 2} \\
f^{\prime}(x) & =\frac{1}{2}\left(2 x^{3}-5 x\right)^{-\frac{1}{2}} \frac{d}{d x}\left(2 x^{3}-5 x\right) \\
& =\frac{1}{2}\left(2 x^{3}-5 x\right)^{-1 / 2}\left(6 x^{2}-5\right) \\
& =\frac{6 x^{2}-5}{2 \sqrt{2 x^{3}-5 x}}
\end{aligned}
$$

Example 4: Suppose that $y=\frac{2}{\left(3 x^{5}-4\right)^{3}}$. Find $\frac{d y}{d x}$.

$$
\begin{aligned}
y= & 2\left(3 x^{5}-4\right)^{-3} \\
\frac{d y}{d x} & =-6\left(3 x^{5}-4\right)^{-4} \frac{d}{d x}\left(3 x^{5}-4\right) \\
& =-6\left(3 x^{5}-4\right)^{4}\left(15 x^{4}\right)=-90 x^{4}\left(3 x^{5}-4\right)^{-4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example 5: Find the derivative of } f(x)=\sqrt[3]{\cos x} \text {. } \\
& f(x)=(\cos x)^{1 / 3} \\
& f^{\prime}(x)=\frac{1}{3}(\cos x)^{-2 / 3} \frac{d}{d x}(\cos x) \\
& =\frac{1}{3}(\cos x)^{-2 / 3}(-\sin x)=-\frac{\sin x}{3(\cos x)^{2 / 3}} \\
& y=\frac{1}{2} x^{4} \\
& \text { Example 6: Find the derivative of } g(x)=\cos \sqrt[3]{x} \text {. } \\
& \begin{array}{l}
g(x)=\cos (\sqrt[3]{x})=\cos \left(x^{1 / 3}\right) \\
g^{\prime}(x)=-\sin \left(x^{1 / 3}\right) \frac{d}{d x}\left(x^{1 / 3}\right) \\
-\sin \left(x^{1 / 3}\right)\left(\frac{1}{3} x^{-2 / 3}\right)=-
\end{array} \\
& \begin{array}{l}
g(x)=\cos (\sqrt[3]{x})=\cos \left(x^{1 / 3}\right) \\
g^{\prime}(x)=-\sin \left(x^{1 / 3}\right) \frac{d}{d x}\left(x^{1 / 3}\right) \\
-\sin \left(x^{1 / 3}\right)\left(\frac{1}{3} x^{-2 / 3}\right)=
\end{array} \\
& \begin{array}{l}
=\cos (\sqrt[3]{x})=\cos (x \\
=-\sin \left(x^{1 / 3}\right) \frac{d}{d x}\left(x^{1 / 3}\right)-\sin \left(x^{1 / 3}\right)\left(\frac{1}{3} x^{-2 / 3}\right)=-\frac{\sin \left(x^{1 / 3}\right)}{3 x^{2 / 3}}=-\frac{\sin \sqrt[3]{x}}{3 \sqrt[3]{x^{2}}} \text { in were- } \operatorname{cosin} \\
=-\operatorname{lin}
\end{array} \\
& y^{\prime}=\frac{1}{2} x^{3}=2 x^{3}
\end{aligned}
$$

Example 7: Suppose that $y=\frac{1}{\cos x}$. Find $\frac{d y}{d x}$.

$$
\begin{aligned}
& \text { Suppose that } y=\frac{1}{\cos x} \text {. Find } \frac{d y}{d x} . \\
& y=(\cos x)^{-1} \\
& \frac{d y}{d x}=-1(\cos x)^{-2} \frac{d}{d x}(\cos x) \\
& =-1(\cos x)^{-1}(-\sin x) \\
& (\sin x \\
& (\cos x)^{2}
\end{aligned}
$$

Example 8: Suppose that $h(x)=\left(3 x^{2}-4\right)^{3}(2 x-9)^{2}$. Find $h^{\prime}(x)$.
Product Rule:

$$
\begin{aligned}
& \text { Le 8: Suppose that } h(x)=\left(3 x^{2}-4\right)^{3}(2 x-9)^{2} \text {. Find } h^{\prime}(x) . \\
& \text { Rule: } \quad h^{\prime}(x)=\left(3 x^{2}-4\right)^{2} \frac{d}{d x}(2 x-9)^{2}+(2 x-9)^{2} \frac{d}{d x}\left(3 x^{2}-4\right)^{3} \\
&=\left(3 x^{2}-4\right)^{3}(2(2 x-9)(2))+(2 x-9)^{2}\left(3\left(3 x^{2}-4\right)^{2}(6 x)\right) \\
&= 4\left(3 x^{2}-4\right)^{3}(2 x-9)+\frac{18 x(2 x-9)^{2}\left(3 x^{2}-4\right)^{2}}{} \\
&=2\left(3 x^{2}-4\right)^{2}(2 x-9)\left[2\left(3 x^{2}-4\right)+9 x(2 x-9)\right] \\
&=2\left(3 x^{2}-4\right)^{2}(2 x-9)\left[6 x^{2}-8+18 x^{2}-81 x\right] \\
&=2\left(3 x^{2}-4\right)^{2}(2 x-9)\left(24 x^{2}-8 x-8\right)
\end{aligned}
$$

Example 9: Suppose that $f(x)=\left(\frac{2 x+1}{2 x-1}\right)^{5}$. Find $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =5\left(\frac{2 x+1}{2 x-1}\right)^{4} \frac{d}{d x}\left(\frac{2 x+1}{2 x-1}\right)=5\left(\frac{2 x+1}{2 x-1}\right)^{4}\left(\frac{(2 x-1)(2)-(2 x+1)(2)}{(2 x-1)^{2}}\right) \\
& =5\left(\frac{2 x+1}{2 x-1}\right)^{4}\left(\frac{4 x-2-4 x-2}{(2 x-1)^{2}}\right)=5\left(\frac{2 x+1}{2 x-1}\right)^{4}\left(\frac{-4}{(2 x-1)^{2}}\right) \\
& =\frac{-20(2 x+1)^{4}}{(2 x-1)^{6}}
\end{aligned}
$$

Example 10: Find the derivative of $y=\cos \left(\sin \left(\pi x^{2}\right)\right)$.

$$
\begin{aligned}
\frac{d y}{d x} & =-\sin \left(\sin \left(\pi x^{2}\right)\right) \frac{d}{d x}\left(\sin \left(\pi x^{2}\right)\right) \\
& =-\sin \left(\sin \left(\pi x^{2}\right)\right) \cos \left(\pi x^{2}\right) \frac{d}{d x}\left(\pi x^{2}\right) \\
& =-\sin \left(\sin \left(\pi x^{2}\right)\right)\left(\cos \left(\pi x^{2}\right)\right)(2 \pi x) \\
& =-2 \pi x \sin \left(\sin \left(\pi x^{2}\right)\right)\left(\cos \left(\pi x^{2}\right)\right)
\end{aligned}
$$

Example 11: Find the derivative of $g(x)=\frac{\cos ^{2} x}{\sqrt{4 x+1}} . \quad g(x)=\frac{(\cos x)^{2}}{(4 x+1)^{1 / 2}}$

$$
\begin{aligned}
g^{\prime}(x) & =\frac{(4 x+1)^{1 / 2} \frac{d}{d x}(\cos x)^{2}-(\cos x)^{2} \frac{d}{d x}(4 x+1)^{1 / 2}}{\left[(4 x+1)^{1 / 2}\right]^{2}} \\
& =\frac{(4 x+1)^{1 / 2}(2)(\cos x)(-\sin x)-(\cos x)^{2}\left(\frac{1}{2}\right)(4 x+1)^{-1 / 2}(4)}{4 x+1} \\
= & \frac{-2 \cos x \sin \sqrt{4 x+1}-\frac{24(\cos x)^{2}}{12 \sqrt{4 x+1}} \cdot \frac{\sqrt{4 x+1}}{\sqrt{4 x+1}}=}{4 x+1}=
\end{aligned}
$$

Example 12: Find the first and second derivatives of $f(x)=\left(x^{2}+4\right)^{5}$.

$$
\begin{aligned}
f^{\prime}(x) & =5\left(x^{2}+4\right)^{4}(2 x)=10 x\left(x^{2}+4\right)^{4} \\
f^{\prime \prime}(x) & =10 x \frac{d}{d x}\left(x^{2}+4\right)^{4}+\left(x^{2}+4\right)^{4} \frac{d}{d x}(10 x) \\
& =10 x(4)\left(x^{2}+4\right)^{3}(2 x)+\left(x^{2}+4\right)^{4}(10) \\
& =80 x^{2}\left(x^{2}+4\right)^{3}+10\left(x^{2}+4\right)^{4} \\
& =10\left(x^{2}+4\right)^{3}\left[8 x^{2}+x^{2}+4\right]=10\left(x^{2}+4\right)^{3}\left(9 x^{2}+4\right)
\end{aligned}
$$

Example 13: Find the first and second derivatives of $f(x)=\cos \left(3 x^{2}\right)$.

$$
\begin{aligned}
f^{\prime}(x) & =-\left(\sin \left(3 x^{2}\right)\right)(6 x)=-\frac{-6 x \sin \left(3 x^{2}\right)}{L-\sin } \\
f^{\prime \prime}(x) & =-6 x \frac{d}{d x}\left(\sin \left(3 x^{2}\right)+\frac{d}{d x}(-6 x)\right. \\
& =-6 x\left(\cos \left(3 x^{2}\right)\right)(6 x)+\left(\sin \left(3 x^{2}\right)\right)(-6) \\
& =-36 x^{2} \cos \left(3 x^{2}\right)-6 \sin \left(3 x^{2}\right)
\end{aligned}
$$

Example 14: Find the first and second derivatives of $y=\frac{2}{(3 x+5)^{2}} \quad y=2(3 x+5)^{-2}$

$$
\begin{aligned}
& \frac{d y}{d x}=y^{\prime}=-4(3 x+5)^{-3} \frac{d}{d x}(3 x+5)=-4(3 x+5)^{-3}(3)=-12(3 x+5)^{-3} \\
&=-\frac{d^{2} y}{d x^{2}}=y^{\prime}=36(3 x+5)^{-4}(3) \\
& \frac{108}{12}
\end{aligned}
$$

$$
=36(3 x+5)(3)=\frac{108}{(3 x+5)^{4}}
$$

Example 15: Find the equation of the tangent line to $y=\frac{x^{2}}{\sin \pi x+1}$ at the point where $x=1$.

$$
\begin{aligned}
& \text { Point: }\left.y\right|_{x=1}=\left.\frac{x^{2}}{\sin \pi x+1}\right|_{x=1}=\frac{1^{2}}{\sin (\pi)+1}=\frac{1}{0+1}=\frac{1}{1}=1 \\
& \begin{aligned}
& \frac{d y}{d x}= \frac{(\sin \pi x+1) \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}(\sin \pi x+1)}{(\sin \pi x+1)^{2}}=\frac{(\sin \pi x+1)(2 x)-x^{2}((\cos (\pi x))(\pi+0)}{(\sin \pi x+1)^{2}} \\
&= \frac{2 x(\sin \pi x+1)-\pi x^{2} \cos \pi x}{(\sin \pi x+1)^{2}} \\
& \begin{aligned}
&\left.\frac{d y}{d x}\right|_{x=1}=\frac{2(1)(\sin \pi+1)-\pi(1)^{2} \cos \pi}{(\sin \pi+1)^{2}}=\frac{2(0+1)-\pi(-1)}{(0+1)^{2}} \\
&=\frac{2+\pi}{1}=2+\pi \quad \operatorname{slope} \text { of tangent line } \\
& y-y_{1}=m(x-x) \\
& y-1=(2+\pi)(x-1) \\
& y-1=2 x-2+\pi x-\pi
\end{aligned} \\
&y=2 x+\pi x-1-\pi) y=(2+\pi) x-1-\pi
\end{aligned}
\end{aligned}
$$

Ex (1) coutld:

$$
\begin{aligned}
& \frac{-2 \cos x \sin \sqrt{4 x+1}-\frac{2 x(\cos x)^{2}}{12 \sqrt{4 x+1}}}{4 x+1} \cdot \frac{\sqrt{4 x+1}}{\sqrt{4 x+1}} \\
& =\frac{-2(\cos x \sin x)(4 x+1)-2(\cos x)^{2}}{(4 x+1)^{3 / 2}} \\
& =\frac{-2 \cos x((4 x+1) \sin x-\cos x)}{(4 x+1)^{3 / 2}}
\end{aligned}
$$

