2.5: Implicit Differentiation

Example 1: Given the equation $x^{3}-4 y-9 x^{2}=5$, find $\frac{d y}{d x}$ by
a) Solving explicitly for y .
b) Implicit differentiation.
(a) Solve for $y: x^{3}-9 x^{2}-5=4 y$

$$
\begin{aligned}
& y=\frac{x^{3}-9 x^{2}-5}{4} \\
& y=\frac{1}{4}\left(x^{3}-9 x^{2}-5\right) \\
& \frac{d y}{d x}=\frac{1}{4}\left(3 x^{2}-18 x\right)=\frac{3}{4} x^{2}-\frac{9}{2} x
\end{aligned}
$$

Example 2: Find $\frac{d y}{d x}$ for $x y=4$.

$$
\frac{d}{d x}(x y)=\frac{d}{d x}(4)
$$

Product Rule: $x \frac{d y}{d x}+y \frac{d}{d x}(x)=0$

$$
x \frac{d y}{d x}+y(1)=0
$$

Solve for $\frac{d y}{d x}$:
(b) Implicit differentiation:

$$
x^{3}-4 y-9 x^{2}=5
$$

$$
\frac{d}{d x}\left(x^{3}-4 y-9 x^{2}\right)=\frac{d}{d x}(5)
$$

$$
3 x^{2}-4 \frac{d y}{d x}-18 x=0
$$

Solve for $\frac{d y}{d x}$.

$$
\begin{aligned}
& 3 x^{2}-18 x=4 \frac{d y}{d x} \\
& \frac{3 x^{2}}{4}-\frac{18 x}{4}=\frac{4 \frac{d y}{d x}}{4} \\
& \frac{d y}{d x}=\frac{3 x^{2}}{4}-\frac{9 x}{2}
\end{aligned}
$$

Example 3: Find $\frac{d y}{d x}$ for the equation $x^{3} y-2 x^{2} y^{3}+x^{2}-3=0$.

$$
\begin{gathered}
\frac{d}{d x}\left(x^{3} y-2 x^{2} y^{3}+x^{2}-3\right)=\frac{d}{d x}(0) \\
x^{3} \frac{d y}{d x}+y \frac{d}{d x}\left(x^{3}\right)-2 x^{2} \frac{d}{d x}\left(y^{3}\right)+y^{3} \frac{d}{d x}\left(-2 x^{2}\right)+2 x-0=0 \\
x^{3} \frac{d y}{d x}+y\left(3 x^{2}\right)-2 x^{2}\left(3 y^{2} \frac{d y}{d x}\right)+y^{3}(-4 x)+2 x=0 \\
x^{3} \frac{d y}{d x}+3 x^{2} y-6 x^{2} y^{2} \frac{d y}{d x}-4 x y^{3}+2 x=0
\end{gathered}
$$

solve for $\frac{d y}{d x}$. (Put terms with $\frac{d y}{d x}$ all on 1 side, put terms without $\frac{d y}{d f}$ on other sidel.

$$
\begin{aligned}
& x^{3} \frac{d y}{d x}-6 x^{2} y^{2} \frac{d y}{d x}=-3 x^{2} y+4 x y^{3}-2 x \\
& \frac{d y}{d x}\left(x^{3}-6 x^{2} y^{2}\right)=-3 x^{2} y+4 x y^{3}-2 x \Longrightarrow \frac{d y}{d x}=\frac{-3 x^{2} y+4 x y^{3}-2 x}{x^{3}-6 x^{2} y^{2}}
\end{aligned}
$$

Example 4: Find $\frac{d y}{d x}$ for the equation $\frac{1}{y^{4}}-\frac{5}{x^{4}}=1$.
Rewrite:

$$
\begin{aligned}
& y^{-4}-5 x^{-4}=1 \\
& \frac{d}{d x}\left(y^{-4}-5 x^{-4}\right)=\frac{d}{d x}(1) \\
& -4 y^{-5} \frac{d y}{d x}+20 x^{-5}=0 \\
& -\frac{4}{y^{5}} \frac{d y}{d x}=-\frac{20}{x^{5}}
\end{aligned}
$$

Example 5: Find $\frac{d y}{d x}$ for the equation $(x-y)^{4}=y^{2}$.

$$
\begin{aligned}
& (x-y)^{4}=y^{2} \\
& \frac{d}{d x}(x-y)^{4}=\frac{d}{d x}\left(y^{2}\right) \\
& 4(x-y)^{3} \frac{d}{d x}(x-y)=2 y \frac{d y}{d x} \\
& 4(x-y)^{3}\left(1-\frac{d y}{d x}\right)=2 y \frac{d y}{d x}
\end{aligned}
$$

$$
\underbrace{(x-y)^{4}=y^{2}}_{\substack{\text { move to } \\ \text { right -had aide }}} 4(x-y)^{3}(1)-\underbrace{4(x-y)^{3} \frac{d y}{d x}}_{\underbrace{3}}=2 y \frac{d y}{d x}
$$

$$
4(x-y)^{3}=2 y^{d y} d x+4(x-y)^{3} \frac{d y}{d x}
$$

$$
4(x-y)^{3}=\underbrace{\frac{d y}{d x}}\left(2 y+4(x-y)^{3}\right)
$$

$$
\frac{4(x-y)^{3}}{2 y+4(x-y)^{3}}=\frac{d y}{d x}
$$

Example 6: Find $\frac{d y}{d x}$ for the equation $x+\cos \left(x^{2} y\right)=y \quad 2 y+4(x-y)^{3}=\frac{d}{d y}$ a

$$
\begin{aligned}
& \frac{d}{d x}\left(x+\cos \left(x^{2} y\right)\right)=\frac{d}{d x}(y) \\
& 1-\left(\sin \left(x^{2} y\right)\right) \frac{d}{d x}\left(x^{2} y\right)=\frac{d y}{d x} \\
& 1-\left(\sin \left(x^{2} y\right)\right),\left(x^{2} \frac{d y}{d x}+y \cdot 2 x\right)=\frac{d y}{d x} \\
& 1-x^{2} \frac{d y}{d x} \sin \left(x^{2} y\right)-2 x y \sin \left(x^{2} y\right)=\frac{d y}{d x} \\
& 1-2 x y \sin \left(x^{2} y\right)=\frac{d y}{d x}+x^{2} \frac{d y}{d x} \sin \left(x^{2} y\right) \\
& \frac{1-2 x y \sin \left(x^{2} y\right)=\frac{d y}{d x}\left(1+x^{2} \sin \left(x^{2} y\right)\right)}{1+2 x y \sin \left(x^{2} y\right)}=\frac{d y}{d x}
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{2(x-y)^{3}}{y+2(x-y)^{3}}
$$

Finding higher-order derivatives using implicit differentiation:
To find the second derivative, denoted $\frac{d^{2} y}{d x^{2}}$, differentiate the first derivative $\frac{d y}{d x}$ with respect to x.

$$
\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

Example 7: Find $\frac{d^{2} y}{d x^{2}}$ for the equation $x^{3}-2 x^{2}=y$.

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{3}-2 x^{2}\right)=\frac{d}{d x}(y) \\
& 3 x^{2}-4 x=\frac{d y}{d x} \\
& \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(3 x^{2}-4 x\right)
\end{aligned}
$$

$$
=6 \quad \frac{d^{2} y}{d x^{2}}=
$$

Example 8: Find $\frac{d^{2} y}{d x^{2}}$ for the equation $x y^{2}-y=3$.

$$
\begin{gathered}
\frac{d}{d x}\left(x y^{2}-y\right)=\frac{d}{d x}(3) \\
x \frac{d}{d x}\left(y^{2}\right)+y^{2} \frac{d}{d x}(x)-\frac{d y}{d x}=0 \\
x\left(2 y \frac{d y}{d x}\right)+y^{2}(1)-\frac{d y}{d x}=0 \\
2 x y \frac{d y}{d x}+y^{2}-\frac{d y}{d x}=0 \text { imit } \\
\frac{d y}{d x}(2 x y-1)=-y^{2} \\
\frac{d y}{d x}=\frac{-y^{2}}{2 x y-1}=\frac{y^{2}}{-2 x y+1}
\end{gathered}
$$

$$
\begin{aligned}
& 7 \frac{(2 x y-1) \frac{d}{d x}\left(-y^{2}\right)-\left(-y^{2}\right) \frac{d}{d x}(2 x y-1)}{(2 x y-1)^{2}} \\
& =\frac{(2 x y-1)\left(-2 y \frac{d y}{d x}\right)+y^{2}\left(2 x \frac{d y}{d x}+y(2)+0\right)}{(2 x y-1)^{2}} \\
& =\frac{-4 x y^{2} \frac{d y}{d x}+2 y \frac{d y}{d x}+2 x y^{2} \frac{d y}{d x}+2 y^{3}}{(2 x y-1)^{2}} \\
& =\frac{-2 x y^{2} \frac{d y}{d x}+2 y \frac{d y}{d x}+2 y^{3}}{(2 x y-1)^{2}}
\end{aligned}
$$

Continued at end of notes.

$$
\begin{array}{r}
x=2, y=\sqrt{3} \Rightarrow 4(2)^{2}+16(\sqrt{3})^{2}=2.5 .4 \\
66+16.3=64
\end{array}
$$

Example 9: Find the equation of the tangent line to the ellipse $4 x^{2}+16 y^{2}=64$ at the point $16+48=64$

$$
\begin{aligned}
& (2, \sqrt{3}) \text {. } \\
& \text { En of tangent } \\
& \text { line has } \\
& \text { slope } \frac{d y}{d x} \text {, so } \\
& \text { find } \frac{d y}{d x} \\
& \frac{d}{d x}\left(4 x^{2}+16 y^{2}\right)=\frac{d}{d x}(64) \\
& 8 x+32 y \frac{d y}{d x}=0 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-\sqrt{3}=-\frac{\sqrt{3}}{6}(x-2)^{\prime} \\
& y-\sqrt{3}=-\frac{\sqrt{3}}{6} x+\frac{2 \sqrt{3}}{6} \\
& 32 y \frac{d y}{d x}=-8 x \quad y=\frac{-\sqrt{3}}{6} x+\frac{\sqrt{3}}{3}+\sqrt{3}\left(\frac{3}{3}\right) \\
& \frac{d y}{d x}=\frac{-8 x}{32 y}=-\frac{x}{4 y} \quad y=-\frac{\sqrt{3}}{6} x+\frac{4 \sqrt{3}}{3} \\
& \begin{aligned}
\left.\frac{d y}{d x}\right|_{x=2, y=\sqrt{3}}=-\frac{2}{4 \sqrt{3}}=-\frac{2}{4 \sqrt{3}}\left(\frac{\sqrt{3}}{\sqrt{3}}\right)= & -\frac{2 \sqrt{3}}{12} \\
& =-\frac{\sqrt{3}}{6}
\end{aligned}
\end{aligned}
$$

Definition: Two curves are said to be orthogonal if at each point of intersection, their tangent lines are perpendicular.

Example 10: Show that the hyperbola $x^{2}-y^{2}=5$ and the ellipse $4 x^{2}+9 y^{2}=72$ are orthogonal.

Ex $1 \frac{1}{2} i \quad$ Find $\quad \frac{d y}{d x}$ for $x^{2}+y^{2}=4$

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(4) \\
& 2 x+2 y \frac{d y}{d x}=0
\end{aligned}
$$

Chain rule: $\frac{d u}{d x}=\frac{d u}{d y} \cdot \frac{d y}{d x}$

Fails vertical lino test, so y is not a function of x.
solving for y

$$
\text { results } y= \pm \sqrt{4-x^{2}}
$$

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

Note:
This is the slope of

$$
\begin{aligned}
\frac{d}{d x}(\sin x)^{2} & =2 \sin x \frac{d}{d x}(\sin x) \\
& =2 \sin x \cos x
\end{aligned}
$$

the tangent line at the
Ex 8 continued.

$$
\begin{aligned}
& =\frac{-2 x y^{2} \frac{d y}{d x}+2 y \frac{d y}{d x}+2 y^{3}}{(2 x y-1)^{2}} \quad \text { Substitute } \frac{d y}{d x}=\frac{-y^{2}}{2 x y-1} \\
& =\frac{-2 x y^{2}\left(\frac{-y^{2}}{2 x y-1}\right)+2 y\left(\frac{-y^{2}}{2 x y-1}\right)^{2}+2 y^{3}}{(2 x y-1)^{2}} \cdot \frac{2 x y-1}{2 x y-1} \\
& =\frac{2 x y^{4}-2 y^{3}+2 y^{3}(2 x y-1)}{(2 x y-1)^{3}}=\frac{2 x y^{4}-2 y^{3}+4 x y^{4}-2 y^{3}}{(2 x y-1)^{3}} \\
& =\frac{6 x y^{4}-4 y^{3}}{(2 x y-1)^{3}}
\end{aligned}
$$

Alternate approach:

$$
\begin{gathered}
x y^{2}-y=3 \\
x \cdot 2 y \frac{d y}{d x}+y^{2}(1)-\frac{d y}{d x}=0 \\
2 x y \frac{d y}{d x}+y^{2}-\frac{d y}{d x}=0 \\
2 x y \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x} \cdot \frac{d}{d x}(2 x y)+2 y \frac{d y}{d x}-\frac{d^{2} y}{d x^{2}}=0 \\
2 x y \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}\left(2 x \frac{d y}{d x}+y(2)\right)+2 y \frac{d y}{d x}-\frac{d^{2} y}{d x^{2}}=0
\end{gathered}
$$

Then could substitute $\frac{-y^{2}}{(2 x y-1)}=\frac{d y}{d x}$ and then solve for $\frac{d^{2} y}{d x^{2}}$

