3.2: Rolle's Theorem and the Mean Value Theorem

Tole's Theorem:
Let f be a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

If $f(a)=f(b)$, then there is a number c in (a, b) such that $f^{\prime}(c)=0$.

Illustration:

Example 1: Show that the function $f(x)=x^{2}-4 x-5$ satisfies the hypotheses of Rolle's Theorem on the interval $[-1,5]$. Find all numbers c in $[-1,5]$ that satisfy the conclusion of Rolle's Theorem. fie a polynomial, so it is continuous and differentiable on $(-\infty, \infty)$.

$$
\begin{aligned}
& f(-1)=(-1)^{2}-4(-1)-5=1+4-5=0 \\
& f(5)=(5)^{2}-4(5)-5=25-25=0 \\
& \text { so } f(-1)=f(5) .
\end{aligned}
$$

Find $f^{\prime}(x)$ and set it $=0: f^{\prime}(x)=2 x-4$

$$
\begin{aligned}
& 0=2 x-4 \\
& 0=2(x-2)
\end{aligned}
$$

2 is the only c in $[-1,5]$

$$
x=2
$$

such that $f^{\prime}(c)=0$.

Example 2: Show that the function $g(x)=-2 x^{4}+16 x^{2}$ satisfies the hypotheses of Rolle's Theorem on the interval $[-3,3]$. Find all numbers c that satisfy the conclusion of Rolle's Theorem.
continuous \& differeticuble? Yes, it's a

$$
\begin{aligned}
& g(-3)=f(3) . \\
& g^{\prime}(x)=-8 x^{3}+32 x \\
&=-8 x\left(x^{2}-4\right)=-8 x(x+2)(x-2) \\
& \text { critical \#s are } 0,2,-2 .
\end{aligned}
$$

All three are ir $[-3,3]$ and have $f^{\prime}(c)=0$.

Mean Value Theorem:

Let f be a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. $\frac{\Delta y}{\Delta x}$

$$
y=\sqrt{x}
$$

$$
y=-2 x
$$

Example 3: Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

$$
f(x)=\sqrt{x}-2 x \text { on the interval }[0,4] \quad \text { Domain: }[0, \infty)
$$

Find slope of secant line:
continuous and differentiable

$$
m=\frac{\Delta y}{\Delta x}=\frac{f(4)-f(0)}{4-0}=\frac{-6-0}{4-0}=-\frac{6}{4}=-\frac{3}{2}
$$ or $[0, \infty)$.

Find points: $f(0)=\sqrt{0}-2(0)=0 \Rightarrow(0,0)$

$$
f(4)=\sqrt{4}-2(4)=2-B=-6 \Rightarrow(4,-6)
$$

$$
\begin{aligned}
& f(4)=\sqrt{4}-2(4)=2-8=-6 \Rightarrow(4,-6) \\
& \text { Find } f^{\prime}(x) \text { and set it equal to }-\frac{3}{2}: \\
& f(x)=x^{\prime / 2}-2 x \\
& f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}-2=\frac{1}{2 \sqrt{x}}-2 \\
& \frac{1}{2 \sqrt{x}}-2=-\frac{3}{2} \quad \begin{array}{l}
\frac{1}{2 \sqrt{x}}(2 \sqrt{x})-2(2 \sqrt{x}) \\
1-4 \sqrt{x}=-3 \sqrt{x}=-\frac{3}{2}(2 \sqrt{x}) \\
1=4 \sqrt{x}-3 \sqrt{x} \\
1=\sqrt{(1)}=(\sqrt{x})^{2}
\end{array}
\end{aligned}
$$

Example 4: As you drive by a Houston police car, your speed is clocked at 50 miles per hour. $\backslash=\mathcal{X}$ Five minutes and five miles further, you pass by another HPD officer, who clocks you at 55 miles per hour. If the speed limit on the entire stretch of highway is 55 mph , would the second officer be justified in writing you a speeding ticket?
slope of secant line $=$ average rate of change
Slope of tangent line = instantaneous rate of change

Average rate of change

Because of Mean Value Theorem,
somewhere between the officers, (had to be driving 60 mph at some point. so Yes, he can write a ticket!

