3.5: Limits at Infinity

There are two types of limits involving infinity.
$\underline{\text { Limits at infinity, written in the form } \lim _{x \rightarrow \infty} f(x) \text { or } \lim _{x \rightarrow-\infty} f(x) \text {, are related to horizontal asymptotes. }}$

Infinite limits (covered in Section 1.5) take the form of statements like $\lim _{x \rightarrow a} f(x)=\infty$ or $\lim _{x \rightarrow a} f(x)=-\infty$. Infinite limits generally result in vertical asymptotes.

When combined, these two types of limits involving infinity result in statements such as $\lim _{x \rightarrow \infty} f(x)=\infty$ or $\lim _{x \rightarrow \infty} f(x)=-\infty$, which describe the end behavior of graphs.

Limits at infinity:

Let f be a function defined on some interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large. More precisely, $\lim _{x \rightarrow \infty} f(x)=L$ if, for every number $\varepsilon>0$, there exists a corresponding number $M>0$ such that for all $x,|f(x)-L|<\varepsilon$ whenever $x>M$.

Let f be a function defined on some interval $(-\infty, a)$. Then

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

means that the values of $f(x)$ can be made arbitrarily close to L by making x a sufficiently large negative number.

More precisely, $\lim _{x \rightarrow \infty} f(x)=L$ if, for every number $\varepsilon>0$, there exists a corresponding number $N<0$ such that for all $x,|f(x)-L|<\varepsilon$ whenever $x<N$.

Example 1:

Horizontal asymptotes:

The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \text { or } \lim _{x \rightarrow-\infty} f(x)=L
$$

Example 3: Determine $\lim _{x \rightarrow \infty} \frac{1}{x}$ and $\lim _{x \rightarrow-\infty} \frac{1}{x}$.

Theorem: If $r>0$ is a rational number, then $\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0$. Also $\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0$ if x^{r} is defined for all x.

Example 4: Determine $\lim _{x \rightarrow \infty}\left(9+\frac{3}{x^{4}}\right)$

$$
\lim _{x \rightarrow \infty}\left(9+\frac{3}{x^{t}}\right)=9+0=9
$$

To take advantage of this theorem when determining the limit at infinity of a quotient, divide numerator and denominator by the largest power of the variable in the denominator.

Example 5: Find $\lim _{x \rightarrow \infty} \frac{3-2 x}{4 x+6}$.

$$
\begin{array}{r}
\lim _{x \rightarrow \infty} \frac{3-2 x}{4 x+6}=\lim _{x \rightarrow \infty} \frac{\frac{3}{x}-\frac{2 x}{6}}{\frac{4 x}{x}+\frac{6}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{3}{x}-2}{4+\frac{6}{x}} \\
=\frac{0-2}{4+0}=\frac{-2}{4}=-\frac{1}{2}
\end{array}
$$

Example 6: Find $\lim _{x \rightarrow \infty} \frac{2 x^{2}+15 x+9}{5 x^{3}-14}$ and $\lim _{x \rightarrow-\infty} \frac{2 x^{2}+15 x+9}{5 x^{3}-14}$.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{2 x^{2}+15 x+9}{5 x^{3}-14}=\lim _{x \rightarrow \infty} \frac{\frac{2 x^{2}}{x^{3}}+\frac{15 x}{x^{3}}+\frac{9}{x^{3}}}{\frac{5 x^{3}}{x^{3}}-\frac{14}{x^{3}}} \\
&=\lim _{x \rightarrow \infty} \frac{\frac{2}{x}+\frac{15}{x^{2}}+\frac{9}{x^{3}}}{5-\frac{14}{x^{3}}}=\frac{0+0+0}{5-0}=\frac{2}{5}+\frac{15}{x^{2}}+\frac{9}{x^{3}} \\
& 5-\frac{14}{x^{3}}=\frac{0+0+0}{5-0}=\frac{0}{5}=0
\end{aligned}
$$

Example 7: Find the horizontal asymptote (if any) of $h(x)=\frac{8 x^{2}-6 x+1}{3 x^{2}+4 x-5}$.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty^{\infty}} \frac{8 x^{2}-6 x+1}{3 x^{2}+4 x-5}=\lim _{x \rightarrow \infty} \frac{\frac{8 x^{2}}{x^{2}}-\frac{6 x}{x^{2}}+\frac{1}{x^{2}}}{\frac{3 x^{2}}{x^{2}}+\frac{4 x}{x^{2}}-\frac{5}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{8-\frac{6}{x}+\frac{1}{x^{2}}}{3+\frac{4}{x}-\frac{5}{x^{2}}} \\
& \underset{\alpha^{-} \cdots g_{3}-\vec{Y}}{\Delta}=\frac{8-0+0^{x^{2}}}{3+0-0}=\frac{8}{3} \quad \begin{array}{r}
x^{2} \\
\text { Horizontal asymptote: } \\
y=\frac{8}{3}
\end{array} \\
& y=\frac{8}{3}
\end{aligned}
$$

Example 8: Determine $\lim _{x \rightarrow \infty} \frac{7 x^{5}-5 x+1}{8-x^{2}}$ and $\lim _{x \rightarrow-\infty} \frac{7 x^{5}-5 x+1}{8-x^{2}}$.

$$
\begin{aligned}
& \quad \lim _{x \rightarrow \infty} \frac{7 x^{5}-5 x+1}{8-x^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{7 x^{5}}{x^{2}}-\frac{5 x}{x^{2}}+\frac{1}{x^{2}}}{\frac{8}{x^{2}}-\frac{x^{2}}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{7 x^{3}-\frac{5}{x}+\frac{1}{x^{2}}}{\frac{8}{x}-1}=\frac{\lim _{x \rightarrow \infty}\left(7 x^{3}\right)-0+0}{0-1} \\
& \frac{7\left(+ \text { huge) }^{3}\right.}{-1}=\frac{\lim _{x \rightarrow \infty}\left(7 x^{3}\right)}{-1}=-\infty
\end{aligned}
$$

Example 9: Determine $\lim _{x \rightarrow \infty} \frac{\sqrt[3]{x}-\sqrt{x}}{8-x^{-2}}$

$$
\begin{aligned}
& \quad \frac{\text { Example 9: Determine } \lim _{x \rightarrow \infty} \frac{\sqrt[3]{x-\sqrt{x}}}{8-x^{-2}}}{\lim _{x \rightarrow \infty} \frac{\sqrt[3]{x}-\sqrt{x}}{8-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{x^{\frac{1}{3}}-x^{\frac{1}{2}}}{8-\frac{1}{x^{2}}}} \\
& =\frac{\lim _{x \rightarrow \infty} \frac{x^{\frac{1}{3}}\left(1-x^{1 / 6}\right)}{8-\frac{1}{x^{2}}}=-\infty}{\frac{\text { thuge }(1-\text { huge })}{8-0} \rightarrow \frac{+ \text { huge }(- \text { hug g })}{8}=- \text { huge }}
\end{aligned}
$$

an indeterminate form.

Note:

$$
\begin{aligned}
& =\frac{x^{1 / 2}}{x^{1 / 3}}=x^{\frac{1}{2}-\frac{1}{3}} \\
& =x^{\frac{3}{6}-\frac{2}{6}}=x^{\frac{1}{6}}
\end{aligned}
$$

Example 10: Evaluate the limit of $f(x)=\frac{x^{3}+4 x^{2}-11 x-7}{x^{2}+6 x+1}$ as x approaches $\pm \infty$.

$$
\begin{aligned}
& \quad \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x+4-\frac{11}{x}-\frac{1}{x^{2}}}{1+\frac{6}{x}+\frac{1}{x^{2}}}=\frac{\lim _{x \rightarrow \infty} x+4-0+0}{1+0+0} \\
& \begin{array}{l}
\text { Asx>m, } \\
\text { huge th } \\
\rightarrow+\text { huge }
\end{array}=\frac{\lim _{x \rightarrow \infty} x+4}{1}=+\infty \\
& \lim _{x \rightarrow-\infty} f(x)=\frac{\lim _{x \rightarrow-\infty} x+4}{1}=-\infty
\end{aligned}
$$

Example 11: Evaluate the limit of $f(x)=\frac{8 x^{2}-7 x+1}{2 x-3}$ as x approaches $\pm \infty$.
Find the slant asymptote.

$$
\begin{aligned}
& \frac{4 x+\frac{5}{2}}{2 x - 3 \longdiv { 8 x ^ { 2 } - 7 x + 1 }} \\
& \frac{-\left(8 x^{2}-12 x\right)}{5 x+1} \\
& \frac{-\left(5 x-\frac{15}{2}\right)}{1+\frac{15}{2}}=\frac{17}{2}
\end{aligned}
$$

So the slant asymptort

$$
\begin{aligned}
& \text { is } y=4 x+\frac{5}{2} \\
& f(x)=4 x+\frac{5}{2}+\frac{17 / 2}{2 x-3} \\
& \text { So as } x \rightarrow \pm \infty, \\
& y \rightarrow 4 x+\frac{5}{2}+0
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} f(x)=+\infty \\
& \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{aligned}
$$

Slant asymptotes:

Note:
The graphs of the functions in the previous two examples have oblique (slant) asymptotes. This is because the function values (y-values) approached those of a linear function $y=m x+b$ as x approached $\pm \infty$.

Example 12: Evaluate the limit of $f(x)=\frac{2 x^{3}-x^{2}+x}{x-3}$ as x approaches $\pm \infty$. Does the graph of this function have a slant asymptote?

$$
\left.\begin{array}{rl}
f(x)= & 2 x^{2}+5 x+16+\frac{48}{x-3} \\
\text { Graph it: } & \text { parabola } \\
& y=2 x^{2}+5 x+16 \\
& y=2\left(x^{2}+\frac{5}{2} x+\frac{25}{86}\right) \\
+16-\frac{25}{8} \\
\hline
\end{array}\right)
$$

Problem \# 8 contd

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}\left(\frac{7 x^{5}-5 x+1}{8-x^{2}}\right)=\lim _{x \rightarrow-\infty}\left(\frac{7 x^{3}-\frac{5}{x}+\frac{1}{x^{2}}}{\frac{8}{x^{2}}-1}\right) \\
& \begin{array}{l}
\frac{\left(- \text { huge }^{3}\right.}{-1} \\
\frac{\text {-huge }}{-1} \\
+ \text { huge }
\end{array} \\
& =\frac{\lim _{x \rightarrow-\infty}\left(7 x^{3}\right)-0+0}{0-1} \\
& =\frac{\lim _{x \rightarrow-\infty}\left(7 x^{3}\right)}{-1}=+\infty
\end{aligned}
$$

Slant asymptote: occurs when $\operatorname{deg}(\operatorname{denom})=\operatorname{deg}($ num $)-1$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=+\infty \\
& \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{aligned}
$$

Example 10 revisited: $\quad \lim _{x \rightarrow \infty} \frac{x^{3}+4 x^{2}-11 x-7}{x^{2}+6 x+1}$

$$
\begin{aligned}
& \begin{aligned}
& x^{2}+6 x+ \frac{1}{x^{3}+4 x^{2}-11 x-7} \\
& \frac{-\left(x^{3}+6 x^{2}+x\right)}{-2 x^{2}-12 x-7} \\
& \frac{-\left(1-2 x^{2}-12 x-2\right)}{-5}
\end{aligned} \\
& f(x)=\frac{x^{3}+4 x^{2}-11 x-7}{x^{2}+6 x+1}=x-2-\frac{5}{x^{2}+6 x+1} \\
& A=x \rightarrow \pm \infty, y \rightarrow x-2-0
\end{aligned}
$$

so $y=x-2$ is the slant asymptote

