3.6: A Summary of Curve Sketching

Steps for Curve Sketching

1. Determine the domain of f.
2. Find the x-intercepts and y-intercept, if any.
3. Determine the "end behavior" of f, that is, the behavior for large values of $|x|$ (limits at infinity). (usually we can get this from incm/derreasigy)
4. Find the vertical, horizontal, and oblique asymptotes, if any.
5. Determine the intervals where f is increasing/decreasing.
6. Find the relative extremes of f, if any. (You should find both the x - and y-values.)
7. Determine the intervals where f is concave up/concave down.
8. Find the inflection points, if any. (You should find both the x - and y-values.)
9. Plot more points if necessary, and sketch the graph.

Example 1: Sketch the graph of $f(x)=x^{3}-6 x^{2}+9 x$.
Domain: $(-\infty, \infty)$
Find intercepts: $f(x)=$
Set $y=0$:

$$
1\left(x^{2}-6 x+9\right)=x(x-3)^{2}
$$

$$
0=x(x-3)^{2}
$$

$$
x=0, x=3
$$

set $x=0:$

$$
\begin{aligned}
f(x) & =x^{3}-6 x^{2}+9 x \\
f(0) & =0^{3}-6(0)^{2}+9(0) \\
& =0 \text { so } y \text {-int is } 0 .
\end{aligned}
$$

$$
y=\frac{\text { inter ute }}{0 \times 0}(0,0)
$$

Relative man at $(1, A)$. Relative min at $(3,0)$.
No asymptotes Inflection pt $(2,2)$

Example 2: \quad Sketch the graph of $f(x)=3 x^{4}+4 x^{3}$.

$$
f(x)=x^{3}(3 x+4)
$$

Find x-indereepts: Set $f(x)=0: 0=x^{3}(3 x+4)$

$$
x=0,-4 / 3
$$

Find y-interest: Set $x=0: y=3(0)^{4}+4(0)^{3}$ $y=0$
Find increasig/decreasig intwals:

$$
f^{\prime}(x)=12 x^{3}+12 x^{2}
$$

$$
\begin{aligned}
& =12 x \\
& =\left(2 x^{2}(x+1)\right.
\end{aligned}
$$

Setting $f^{\prime}(x)=0$ gives critical th s $0,-1$.
$(-\infty,-1)$: T $_{\text {e }} \quad x=-2$

$$
\begin{aligned}
&-1): T \text { ed } x=-2 \\
& f^{\prime}(-2)=12(-2)^{2}(-2+1) \\
& \Rightarrow(+)(t)(-) \\
& \Rightarrow(-)
\end{aligned}
$$

$(-1,0):$ Test $x=-0.5$

$$
\begin{aligned}
& \text { : Test } x=-0.5 \\
& F^{\prime}(-0.5)=12(-0.5)^{2}(-0.5+1) \\
& \Rightarrow(t)(+1)(+)
\end{aligned}
$$

$(0, \infty)=$ Test $x=1$

$$
\begin{aligned}
& =\text { Test } x=1 \\
& f^{\prime}(1)=12(1)^{2}(1+1)
\end{aligned}
$$

Relative min at $x=-1$.

$$
\begin{aligned}
& \text { Elative min at } x=-1 \\
& \text { Find } y: f(-1)=3(-1)^{4}+4(-1)^{3}
\end{aligned}
$$

$$
=3-4=-1
$$

Concavity contd

$$
\begin{aligned}
&\left(-\frac{2}{3}, 0\right): \text { Test } x=-\frac{1}{3} \\
& f^{\prime \prime}\left(-\frac{1}{3}\right)=12\left(-\frac{1}{3}\right)\left(3\left(-\frac{1}{3}\right)+2\right) \\
&=(+)(-)(+) \\
& \Rightarrow t
\end{aligned}
$$

inflection pta at $x=-\frac{2}{3}, 0$
Find y-values:

$$
\begin{aligned}
& f(0)=0 \\
& f\left(-\frac{2}{3}\right)=3\left(-\frac{2}{3}\right)^{4}+4\left(-\frac{2}{3}\right)^{3} \\
& =3\left(\frac{16}{81}\right)+4\left(-\frac{8}{27}\right) \\
& =\frac{66}{27}-\frac{32}{27}=-\frac{16}{27}
\end{aligned}
$$

x-intercepts: $0,-\frac{4}{3}$ or $(0,0),\left(-\frac{4}{3}, 0\right)$
y-intercepts 0 or (o, 0)
No asymptotes

Relative min: $(-1,-1)$

Find concavity $f^{\prime \prime}(x)=36 x^{2}+24 x$

$$
=12 x(3 x+2)
$$

$f^{\prime \prime}(x)=0$ for $x=0, x=-\frac{2}{3}$
$(-\infty,-2 / 3)$: Test $x=-1$

$$
\begin{aligned}
& (-\infty,-2 / 3): \text { Test } x=-1 \\
& f^{\prime \prime}(-1)=12(-1)(3(-1)+2) \Rightarrow(t)(-)(-) \Rightarrow(t)
\end{aligned}
$$

Example 3: \quad Sketch the graph of $f(x)=\frac{2 x}{x^{2}-1}$.

$$
f(x)=\frac{2 x}{(x+1)(x-1)}
$$

Example 4: Sketch the graph of $f(x)=\frac{x^{2}+1}{x^{2}-4}$.

Example 5: Sketch the graph of $f(x)=\frac{x^{2}-4}{x+3}$.

Oblique asymptote: $y=x-3$
Relative min $\approx f(-0.763) \approx-1.5$
Relative max $\approx f(-5.24) \approx-10$.

Example 6: \quad Sketch the graph of $f(x)=5 x^{2 / 3}-x^{5 / 3}$.

Example 7: Sketch the graph of $f(x)=x+\cos x$ on the interval $[-2 \pi, 2 \pi]$.
Find x-interapts: Set $y=0: 0=x+\cos x$
$-x=\cos x \quad \operatorname{can}$ 't solve algebraically
Find y-into rapt: $\operatorname{set} x=0$

$$
y=0+\cos 0=0+1=1
$$

$$
f^{\prime}(x)=1-\sin x
$$

set $f^{\prime}(x)=0: \quad 0=1-\sin x$

$$
\begin{aligned}
& \sin x=1 \\
& x=\frac{\pi}{2},-\frac{3 \pi}{2} \text { critical } t s . ~
\end{aligned}
$$

$$
\left(-2 \pi,-\frac{3 \pi}{2}\right): \text { Test } x=-\frac{11 \pi}{6} \Rightarrow f^{\prime}\left(-\frac{11 \pi}{6}\right)=1-\sin \left(-\frac{11 \pi}{6}\right)=1-\frac{1}{2}=\frac{1}{2}(x)
$$

$\left(-\frac{3 \pi}{2}, \frac{\pi}{2}\right)$: Test $x=0 \Rightarrow 1-\sin 0=1-0=1(t)$
$\left(\frac{\pi}{2}, 2 \pi\right)$: Test $x=\pi \Rightarrow(-\sin \pi=1-0=(t)$
f is in creasing on $(-2 \pi, 2 \pi)$:
Find y-value at endpoints:

$$
\begin{aligned}
f(2 \pi) & =2 \pi+\cos 2 \pi \\
& =2 \pi+1 \\
& \approx 6.28+1 \\
& \approx 7.28 \\
f(-2 \pi) & =-2 \pi+1 \\
& \approx-5.28
\end{aligned}
$$

Ex 1 contd:

$$
\begin{aligned}
f(x) & =x^{3}-6 x^{2}+9 x \\
f^{\prime}(x) & =3 x^{2}-12 x+9 \\
& =3\left(x^{2}-4 x+3\right) \\
& =3(x-3)(x-1)
\end{aligned}
$$

Find critical \#s: $0=3(x-3)(x-1)$

$$
x=3, x=1 \text { critical \#s }
$$

Tees for increasing/decreasig:
$(-\infty, 1)$: Test $x=0$

$$
f^{\prime}(0)=3(0)^{2}-12(0)+9=+9(t)
$$

(1,3): Test $x=1.5$

$$
\begin{aligned}
f^{\prime}(x) & =3(x-3)(x-1) \\
f^{\prime}(1.5) & =3(1.5-3)(1.5-1) \\
& \Rightarrow(t)(-)(t) \\
& \Rightarrow(-)
\end{aligned}
$$

$(3, \infty)$: Test $x=4$

$$
\begin{aligned}
f^{\prime}(x)= & 3(4-3)(4-1) \\
& \Rightarrow(t)(t)(t) \\
& \Rightarrow(t)
\end{aligned}
$$

From sign chart for f^{\prime}, we have a local max at 1 and local mir at 3
Need the y-values; $f(x)=x^{3}-6 x^{2}+9 x$

$$
\begin{aligned}
f(1) & =1^{3}-6(1)^{2}+g(1)=1-6+9 \\
& =-5+9=4 \\
f(3) & =(3)^{3}-6(3)^{2}+g(3) \\
& =27-54+27=0
\end{aligned}
$$

Find concavity:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x+9 \\
& F^{\prime \prime}(x)=6 x-12=6(x-2)
\end{aligned}
$$

set $f^{\prime \prime}(x)=0: 0=6(x-2)$.
$f^{\prime \prime}(x)=0$ for $x=2$
$(-\infty, 2)$: Test $x=0$

$$
\begin{aligned}
& \text { lest } x=0 \\
& f^{\prime \prime}(0)=6(a)-12=-12(-)
\end{aligned}
$$

Inflection p^{t} at $x=2$.
Find the y-value:

$$
\begin{aligned}
f(2) & =2^{3}-6(2)^{2}+9(2) \\
& =8-24+18 \\
& =-16+18=2
\end{aligned}
$$

Example \#3 $f(x)=\frac{2 x}{x^{2}-1}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}-1\right)(2)-2 x(2 x)}{\left(x^{2}-1\right)^{2}}=\frac{2 x^{2}-2-4 x^{2}}{\left(x^{2}-1\right)^{2}}=\frac{-2 x^{2}-2}{\left(x^{2}-1\right)^{2}}=\frac{-2\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{d}{d x}\left(\frac{-2 x^{2}-2}{\left(x^{2}-1\right)^{2}}\right)=\frac{\left(x^{2}-1\right)^{2} \frac{d}{d x}\left(-2 x^{2}-2\right)-\left(-2 x^{2}-2\right) \frac{d}{d x}\left(x^{2}-1\right)^{2}}{\left[\left(x^{2}-1\right)^{2}\right]^{2}} \\
&=\frac{\left(x^{2}-1\right)^{2}(-4 x)+\left(2 x^{2}+2\right)(2)\left(x^{2}-1\right)(2 x)}{\left(x^{2}-1\right)^{4}}=\frac{-4 x\left(x^{2}-1\right)^{2}+4 x\left(2 x^{2}+2\right)\left(x^{2}-1\right)}{\left(x^{2}-1\right)^{4}} \\
&=\frac{4 x\left(x^{2}-1\right)\left[-1\left(x^{2}-1\right)+2 x^{2}+2\right]}{\left(x^{2}-1\right)^{4}}=\frac{4 x\left[-x^{2}+1+2 x^{2}+2\right]}{\left(x^{2}-1\right)^{3}} \\
&=\frac{4 x\left(x^{2}+3\right)}{\left(x^{2}-1\right)^{3}} \\
& \text { From original function }
\end{aligned}
$$

$f(x)=\frac{2 x}{x^{2}-1}=\frac{2 x}{(x+1)(x-1)} \Rightarrow$ Vertical asymptotes $x=1$
(comes from setting denominator $=0$) $\quad x=-1$ x-intercept: 0 or $(0,0)$ (comes from setting numerator $=0$)
Findy-intercept: set $x=0$.
$y=f(0)=\frac{2(0)}{0^{2}-1}=\frac{0}{-1}=0 \Rightarrow y$-interest is 0 or $(0,0)$.
Find horizontal asymptotes
deg (denom) $>\operatorname{deg}$ (mum), so horizontal asymptote is $y=0$.

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow+\infty} \frac{2 x}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{\frac{2}{x}}{1-\frac{1}{x^{2}}}=\frac{0}{1-0}=0
$$

From (st derivative
(st derivative
$f^{\prime}(x)=\frac{-2\left(x^{2}+1\right)}{\left(x^{2}-\right)^{2}}$ at f^{\prime} is undefined at $x= \pm 1 . f$ is also undefined
Where is $f^{\prime}(x)=0$?
Nowhere. So no critical *s

$$
\begin{aligned}
\frac{-2\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{2}} & =0 \quad\left(\text { setting } f^{\prime}(x)^{\prime}=0\right) \\
-2\left(x^{2}+1\right) & =0 \\
x^{2}+1 & =0
\end{aligned}
$$

$x=0$
$x^{2}=-1$
no real solutions.
Note:

$$
f^{\prime}(x)=\frac{-2\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{2}} \Rightarrow \frac{(-)(+)}{(x)} \Rightarrow(-) \text { for all }
$$

No relative extrema.

From $2^{\text {nd }}$ derivative:

$$
f^{\prime \prime}(x)=\frac{4 x\left(x^{2}+3\right)}{\left(x^{2}-1\right)^{3}}
$$

Where is $f^{\prime \prime}(x)$ undefined?
At $x= \pm 1$, same as f Where is $f^{\prime \prime}(x)=0$? At $x=0$

$$
\begin{aligned}
& 0=4 x\left(x^{2}+3\right) \\
& \begin{array}{c}
4 x=0 \\
x=0
\end{array} \quad x^{2}+3=0 \\
& x^{2}=-3 \text { no veal } \\
& x=0 \text { ins }
\end{aligned}
$$

$(-1,0):$ Test $x=-0.5$

$$
\begin{aligned}
& (-1,0): \text { Test } x=-0.5 \\
& f^{\prime \prime}(-0.5) \Rightarrow \frac{4(-0.5)(t)}{\left((-0.5)^{2}-1\right)^{3}} \Rightarrow \frac{(-)(t)}{(-)^{3}} \Rightarrow \frac{(-)}{(-)} \Rightarrow(t) \\
& (0,1): \text { Test } x=0.5
\end{aligned}
$$

$$
\begin{aligned}
& (-\infty,-1): \text { Test } x=-2 \\
& f^{\prime \prime}(-2) \Rightarrow \frac{4(-2)(t)}{\left((-2)^{2}-1\right)^{3}} \\
& \Rightarrow \frac{(-1)(t)}{(4-1)^{3}} \Rightarrow \frac{(-)}{(t)^{3}} \Rightarrow(t)
\end{aligned}
$$

(0,1): Test $x=0.5$

$$
\begin{aligned}
& (0.1): \text { Test } x=0.5 \\
& f^{\prime \prime}(0.5) \Rightarrow \frac{4(0.5)(t)}{\left((0.5)^{2}-1\right)^{3}} \Rightarrow \frac{(t)}{(-)^{3}} \Rightarrow \frac{(t)}{(-)} \Rightarrow(-)
\end{aligned}
$$

$(1, \infty): f^{\prime \prime}(x)>0$
inflection point at $x=0$: Find y-value:

$$
f(0)=0 \quad \text { Inflection pt }:(0,0)
$$

Ex 5: $f(x)=\frac{x^{2}-4}{x+3}=\frac{(x+2)(x-2)}{x+3}$
From original function: Vertical Asymptote $x=-3$
x-intercepts: 2 and -2
$(2,0)$ and $(-2,0)$
y-intercept: $-\frac{4}{3}$
Find the oblique asymptote:

$$
x + 3 \longdiv { x - 3 }
$$

$$
f(x)=x-3+\frac{5}{x+3}
$$

oblique asymptote:

$$
\begin{array}{ll}
f(x)=\frac{-\left(x^{2}+3 x\right)}{x+3} & \frac{-(-3 x-4}{-3 x-9)} \\
f^{\prime}(x)=\frac{(x+3)(2 x)-\left(x^{2}-4\right)(1)}{(x+3)^{2}}=\frac{2 x^{2}+6 x-x^{2}+4}{(x+3)^{2}}=\frac{x^{2}+6 x+4}{(x+3)^{2}}
\end{array}
$$

$f^{\prime}(x)$ is undefined at $x=-3$.
Set numerator $=0$ to find critical \#s.

$$
\begin{aligned}
& x^{2}+6 x+4=0 \\
& x=\frac{-6 \pm \sqrt{36-4(1)(4)}}{2(1)}=\frac{-6 \pm \sqrt{36-16}}{2}=\frac{-6 \pm \sqrt{20}}{2} \\
&=\frac{-6 \pm 2 \sqrt{5}}{2}=\frac{2(-3 \pm \sqrt{5})}{2}=-3 \pm \sqrt{5} \\
& \approx-0.263,-5.236
\end{aligned}
$$

$(-\infty,-5.2 t):$
Test number $x=-6$

$$
\begin{aligned}
& f^{\prime}(-6) \Rightarrow \frac{(-6)^{2}+6(-6)+4}{(t)} \Rightarrow \frac{0+4}{(+)} \Rightarrow(t)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
(-5.24,-3): \text { Test }-4 \\
F^{\prime}(-4)=\frac{(-4)^{2}+6(-4)+4}{(+)} \\
\frac{(6-24+4}{(t)} \Rightarrow \frac{-4}{(+1)}
\end{array}\right.
$$

Find y-values: $\quad f(x)=\frac{x^{2}-4}{x+3}$

$$
\begin{aligned}
& f(-3+\sqrt{5}) \approx-1.527 \\
& f(-3-\sqrt{5}) \approx-10.472
\end{aligned}
$$

Ex: 7 contd.
Ind derivative:

$$
f^{\prime \prime}(x)=-\cos x
$$

$$
\text { Graph } y=-\cos x
$$

Find y-values:

$$
\begin{aligned}
& \text { ind } y \text {-values: } \\
& f\left(-\frac{3 \pi}{2}\right)=-\frac{3 \pi}{2}+\cos \left(-\frac{3 \pi}{2}\right)=-\frac{3 \pi}{2}+0=-\frac{3 \pi}{2} \approx-4.7 \\
& f\left(-\frac{\pi}{2}\right)=-\frac{\pi}{2}+\cos \left(-\frac{\pi}{2}\right)=-\frac{\pi}{2} \approx-1.57 \\
& f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}+\cos \left(\frac{\pi}{2}\right)=\frac{\pi}{2}+0 \approx 1.57
\end{aligned}
$$

$$
+\left(\frac{3 \pi}{2}\right) \approx 4.7
$$

No Relative extrema Inflection Points at $x=-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}$

$$
\begin{aligned}
& f^{\prime}(x)=1-\sin x \\
& f^{\prime \prime}(x)=0-\cos x \\
& =-\cos x \\
& \text { Set } f^{\prime \prime}(x)=0: 0=-\cos x \\
& 0=\cos x \\
& x=\frac{\pi}{2}, \frac{3 \pi}{2},-\frac{\pi}{2},-\frac{3 \pi}{2}
\end{aligned}
$$

