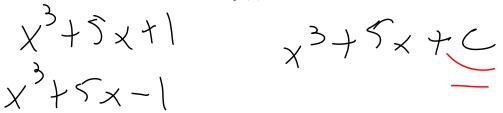
4.1: Antiderivatives and Indefinite Integration

<u>Definition</u>: An *antiderivative* of f is a function whose derivative is f.

i.e. A function F is an antiderivative of f if F'(x) = f(x).

Example 1: \searrow 5 \swarrow is an antiderivative of $f(x) = 3x^2 + 5$.

What are some more antiderivatives of $f(x) = 3x^2 + 5$?



So we have a whole "family" of antiderivatives of f.

<u>Definition</u>: A function F is called an antiderivative of f on an interval I if F'(x) = f(x) for all x in I.

Theorem: If F is an antiderivative of f on an interval I, then all antiderivatives of f on I will be of the form

$$F(x) + C$$

where C is an arbitrary constant.

Example 2: Find the general form of the antiderivatives of $f(x) = 3x^2 + 5$.

Example 3: Find the general form of the antiderivatives of $f(x) = 6x^5 + \cos x$.

Integration:

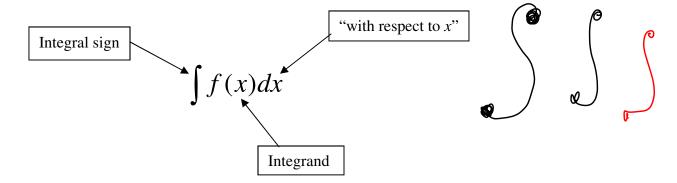
<u>Integration</u> is the process of finding antiderivatives.

 $\int f(x)dx$ is called the *indefinite integral* of f.

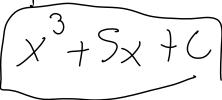
 $\int f(x)dx$ is the family of antiderivatives, or the most general antiderivative of f.

This means: $\int f(x)dx = F(x) + c$, where F'(x) = f(x).

The c is called the *constant of integration*.



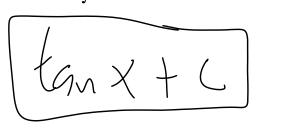
Example 4: Find $\int 3x^2 + 5 dx$



Example 5: Find $\int 6x^5 + \cos x \, dx$.

 $_{\infty}$ Sec 2 \times $d\times$

Example 6: Find $\int \sec^2 dx$.



Rules for Finding Antiderivatives:

Notation in this table: F is an antiderivative of f, G is an antiderivative of g,

	Function	Antiderivative
	k	kx + c
	kf(x)	kF(x)
	f(x) + g(x)	F(x) + G(x)
<u></u>	x^n for $n \neq -1$	χ^{n+1}
		$\frac{n+1}{n+1}$
	$\cos x$	$\sin x$
	$\sin x$	$-\cos x$
	$\sec^2 x$	tan x
	sec x tan x	sec x

- adol 1 toexp - diside byrew

1.
$$\int k \ dx = kx + c$$
 (k a constant)

$$\int X dx = \frac{1}{5} + C$$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \quad (n \neq -1)$$

3.
$$\int k f(x) dx = k \int f(x) dx$$
 (k a constant)

4.
$$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$$

$$5. \int \cos x \, dx = \sin x + c$$

$$6. \int \sin x \, dx = -\cos x + c$$

$$7. \int \sec^2 x \, dx = \tan x + c$$

8.
$$\int \sec x \tan x \, dx = \sec x + c$$

Example 7: Find the general antiderivative of $f(x) = \frac{1}{2}$.

 $F(x) = \frac{1}{2}x + C$

Example 8: Find $\int x^3 dx$.

Example 9: Find $\int 7x^2 dx$.

Example 10: Find $\int \frac{1}{x^5} dx$.

 $\int_{-4}^{6} \frac{1}{x^{4}} dx = \frac{1}{4x^{4}} + C$

Example 11: Find the general antiderivative of $f(x) = \frac{5}{x^2}$

 $\int 5x^{-2} dx = \int x + 2 = -5 + 2$

Example 12: $\int (6x^2 - 3x + 9) dx$

 $\frac{6x^3-3x^2+9x+2}{2}=2x^3-\frac{3}{2}x^2$

Example 13: Find $\int 3\sqrt{x} \, dx$.

53×2/2 = 23×4c = 2x+c

Example 14: Find
$$\int (3\cos x + 5\sin x) dx$$
.

$$\frac{1}{3} - 5 = \frac{1}{3} - \frac{15}{3} = \frac{4.1.5}{14/3}$$

Example 15: Find
$$\int \frac{x^7 - \sqrt[3]{x} + 3x^2}{x^5 + \sqrt[3]{3}} dx$$
.

$$= \int x^7 - x^3 + 3x^2 dx$$

Example 16: Find the general antiderivative of $f(\theta) = \frac{\sin \theta}{2}$

$$-\frac{1}{3}\cos\theta + C$$

Example 18:
$$\int (6y^2 - 2)(8y + 5) dy$$

Example 18:
$$\int (6y^2-2)(8y+5)dy$$

$$\int (48y^3+30y^2-16y-10)dy$$

$$\frac{12y^4+16y^3-6y^2-10y+1}{2}$$

Differential equations:

A *differential equation* is an equation involving the derivative of a function. To solve a differential equation means to find the original function.

An *initial value problem* is a common type of differential equation in which a derivative and an initial condition are given.

Example 19: Given $f'(x) = x^2 - 7$, find f. This is an example of a differential equation.

$$\int_{3}^{2} \sqrt{-1} dx = \frac{3}{3} - 1x + C$$

Example 20: Suppose that $f'(x) = 3x^2 + 2\cos x$ and f(0) = 3. Find f(x). $\int (3x^2 + 2\cos x) dx = x^3 + 2\sin x + C$ $\int (3x^2 + 2\cos x) dx = x^3 + 2\cos x + C$ $\int (3x^$

Example 21: Suppose that $f''(x) = 2x^3 - 6x^2 + 6x$, f'(2) = -1, and f(-1) = 4. Find f(x).

$$S(2x^{3}-6x^{2}+6x) dx$$

$$S(2x^{3}-6x^{2}+6x)$$

Example 22: Suppose that $f''(x) = 12x^2 - 18x$, f(1) = 2, and f(-3) = 1. Find f(x).

$$\int 12x^{2}-18x dx$$

$$4x^{3}-9x^{2}+C=F(x)$$

$$4x^{3}-9x^{2}+C=F(x)$$

$$4(1)^{3}-7(1)^{2}+C=2$$

$$4(1)^{3}-7($$

Velocity and acceleration (rectilinear motion):

We already know that if f(t) is the position of an object at time t, then f'(t) is its velocity and f''(t) is its acceleration.

Note: Acceleration due to gravity near the earth's surface is approximately 9.8 m/s² or 32 ft/s².

Example 23: Suppose a particle's velocity is given by $v(t) = 2\sin t + \cos t$ and its initial position is s(0) = 3. Find the position function of the particle.

$$Sv(t)At=4t)+C$$
 $3=-2cos(a)+5m(a)+C$ $S(2sint+cost)At$ $s=c$ $-2cost+5int+c$ $-2cost+5int+f$

Example 24: Suppose a ball is thrown upward from a 30-foot bridge over a river at an initial velocity of 40 feet per second. How high does it go? When does it hit the water?

$$a(t) = -32$$
 $v(t) = -32t + 40$
 $s = -32t + 40$
 $v(t) = -32t + 40$
 v

 $84^{2}-204-15=0$ $2=-(20)+\sqrt{400-4(8)}(-5)}$ -20 ± 29.65 $-20\pm \sqrt{880}$ 16 2658eL