4.1.1
4.1: Antiderivatives and Indefinite Integration

Definition: An antiderivative of fis a function whose derivative is f.

i.e. A function F is an antiderivative of fif F'(x) = f(x).

Example 1: )/ + g >< is an antiderivative of f(x)=3x"+5.

What are some more antiderivatives of f(x)=3x"+5?
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So we have a whole “family” of antiderivatives of f.

Definition: A function F is called an antiderivative of f on an interval 7 if
F'(x)= f(x) forall xin I.

Theorem: If F is an antiderivative of f on an interval /, then all antiderivatives of f on I will be
of the form

F(x)+C

where C is an arbitrary constant.

Example 2: Find the general form of the antiderivatives of f(x)=3x"+5.
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Example 3: Find the general form of the antiderivatives of f(x)=6x"+cosx.
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Integration:

Integration is the process of finding antiderivatives.

I f(x)dx is called the indefinite integral of f.

J. f(x)dx is the family of antiderivatives, or the most general

antiderivative of f.

This means: If(x)dx =F(x)+c ,where F'(x)= f(x).

The c is called the constant of integration.

“with respect to x”

Integral sign

Jf(x)dx
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Example 4: Find |3x° +5dx.

Example 5: Find _[ 6x° +cos x dx.
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Example 6: Find [sec” dx.
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Rules for Finding Antiderivatives:

Notation in this table: F is an antiderivative of f, G is an antiderivative of g,
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Function Antiderivative
k kx+c
kf (x) kF (x)
f(x)+g(x) F(x)+G(x)
x" for n#—1 X!

n+1
CoS x sin x
sin x —COS X
sec” x tan x
sec xtan x sec x

.jk dx=kx+c (kaconstant)

n+l

. Icosxdx:sinx+c

sinx dx=-cosx+c

=tanx+c

secxtan x dx =secx+c

cre (n#-l)
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[k Fx) dx=k[f(x) dx  (kaconstant)

[[f+gle =] fodr+[ g(n)dx

Example 7: Find the general antiderivative of f(x) :% .
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Example8: Find [+ dx. /)—// + (/
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Example 9: Find [7x” dx. ‘1 >/3 3
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Example 12: [(6x” =3x+9)dx
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Example 13: Find jS&dx.
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Example 14: Find j(3cosx+5sinx)dx. g — 5’3 2z )(/)/3
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Example 16: Find the general antiderivative of f(6) = % .
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Differential equations:

A differential equation is an equation involving the derivative of a function. To solve a
differential equation means to find the original function.

An initial value problem is a common type of differential equation in which a derivative and an
initial condition are given.

Example 19: Given f'(x)=x>—7,find £ This is an example of a differential equation.
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Example 20: Suppose that f'(x) =3x> + ZCos x and| f(0) =3} Find f(x).
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4.1.7
Example 21: Suppose that f"(x)=2x’ —6x>+6x, f'(2)=-1,and f(-1)=4 .Find f(x).
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Example 22: Suppose that f"(x)=12x"—18x, f(1)=2,and f(-3)=1 .Find f(x).
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4.1.8
Velocity and acceleration (rectilinear motion):

We already know that if f(¢) is the position of an object at time ¢, then f'(¢) is its velocity and
f"(¢) is its acceleration.

Note: Acceleration due to gravity near the earth’s surface is approximately 9.8 m/s” or 32 ft/s.

Example 23: Suppose a particle’s velocity is given by v(f) = 2sint+cost and its initial
position is s(0) = 3. Find the position function of the particle.
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Example 24: Suppose a ball is thrown upward from a 30-foot bridge over a river at an initial
velocity of 40 feet per second. How high does it go? When does it hit the water?
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