4.4: The Fundamental Theorem of Calculus

Evaluating the area under a curve by calculating the areas of rectangles, adding them up, and letting taking the limit as $n \rightarrow \infty$ is okay in theory but is tedious at best and not very practical.

Fortunately, there is a theorem that makes calculating the area under the curve (definite integral) much easier.

The Fundamental Theorem of Calculus:
Let f be continuous on the interval $[a, b]$. Then,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f; in other words, where $F^{\prime}(x)=f(x)$.

Notation: We'll use this notation when evaluating definite integrals.

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

Example 1: Find the area under the graph of $f(x)=x$ between 0 and 3.

From Geometry:

Using the Fun. Theorem of Calculus

$$
\text { Note: } \int x d x=\frac{x^{2}}{2}+c
$$

(family of antiderivatius, or general antiderivatives)

$$
\int_{0}^{3} x d x=\left.\left(\frac{x^{2}}{2}+c\right)\right|_{x=0} ^{x=3}
$$

$$
=\left(\frac{3^{2}}{2}+c\right)-\left(\frac{0^{2}}{2}+c\right)
$$

$$
=\frac{9}{2}+c-0-c=\frac{9}{2}
$$

Notice that the constant C disappeared when we evaluated the definite integral. This will always happen.

$$
\int_{a}^{b} f(x) d x=F(x)+\left.c\right|_{a} ^{b}=(F(b)+c)-(F(a)+c)=F(b)+c-F(a)-c=F(b)-F(a)
$$

So from now on, we'll omit the " $+c$ " when evaluating definite integrals.
Example 2: Find the area under the graph of $f(x)=4 x^{2}+1$ over the interval [0,2]. (Compare with our approximation in Section 4.2, Example 5).

$$
\int_{0}^{2}\left(4 x^{2}+1\right) d x=\left(\frac{4 x^{3}}{3}+\left.(x)\right|_{0} ^{2}=\left(\frac{4(2)^{3}}{3}+2\right)-\left(\frac{4(0)^{3}}{3}+0\right)\right.
$$

From Ex in 4.2°.
Right Ends: 17 approximations Left Endpts; 9 aplof the midpts: $12.5 \int$ area

$$
\begin{aligned}
& =\frac{32}{3}+2-0-0 \\
& =\frac{38}{3}=12 \frac{2}{3} \text { Exact }
\end{aligned}
$$

Example 3: Evaluate $\int_{-2}^{4}\left(3 x^{2}-x+4\right) d x$.

$$
\begin{aligned}
\int_{-2}^{4}\left(3 x^{2}-x+4\right) d x & =\left.\left(\frac{3 x^{3}}{3}-\frac{x^{2}}{2}+4 x\right)\right|_{-2} ^{4}=\left.\left(x^{3}-\frac{x^{2}}{2}+4 x\right)\right|_{-2} ^{4} \\
= & {\left[4^{3}-\frac{4^{2}}{2}+4(4)\right]-\left[(-2)^{3}-\frac{(-2)^{2}}{2}+4(-2)\right]=[64-8+16]-[-8-2-8] } \\
& =72-[-18]=72+18=90
\end{aligned}
$$

Note: $\int\left(3 x^{2}-x+4\right) d x=x^{3}-\frac{x^{2}}{2}+4 x+c$
Check: $\frac{d}{d x}\left(x^{3}-\frac{x^{2}}{2}+4 x\right)=3 x^{2}-\frac{1}{2}(2 x)+4=3 x^{2}-x+4$ rok

$$
\begin{aligned}
& \frac{\text { Example 4: Evaluate } \int_{0}^{\pi}\left(4 x^{3}+\cos x\right) d x}{\begin{aligned}
\int_{0}^{\pi}\left(4 x^{3}+\cos x\right) d x=\left(\frac{4 x^{4}}{4}+\sin x\right)_{0}^{\pi} & =\left.\left(x^{4}+\sin x\right)\right|_{0} ^{\pi} \\
& =\left[\pi^{4}+\sin \pi\right]-\left[0^{4}+\sin 0\right]
\end{aligned}=\pi^{4}-0-0-0} \\
& =\pi^{4}
\end{aligned}
$$

Example 5: Evaluate $\int_{1}^{3}\left(\frac{3}{t^{2}}\right) d t$.

$$
\begin{aligned}
\int_{1}^{3} 3 t^{-2} d t=\left.\frac{3 t^{-1}}{-1}\right|_{1} ^{3}=-\left.\frac{3}{t}\right|_{1} ^{3} & =-\frac{3}{3}-\left(-\frac{3}{1}\right) \\
& =-1+3=2
\end{aligned}
$$

Example 6: Evaluate $\int_{2}^{9} \frac{1}{\sqrt{u}} d u . \quad \int \frac{1}{\sqrt{u}} d u=\int u^{-1 / 2} d u=\frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C$

$$
=\frac{u^{1 / 2}}{1 / 2}+c=2 u^{1 / 2}+c=2 \sqrt{u}+c
$$

Chads: $\frac{d}{d u}\left(2 u^{1 / 2}\right)=2\left(\frac{1}{2}\right) u^{-1 / 2}=\frac{1}{\sqrt{u}}{ }_{0}$

$$
\int_{2}^{9} \frac{1}{\sqrt{u}} d u=\left.2 \sqrt{u}\right|_{2} ^{9}=2 \sqrt{9}-2 \sqrt{2}=2(3)-2 \sqrt{2}=6-2 \sqrt{2}
$$

Example 7: Evaluate $\int_{-2}^{4} \frac{1}{x^{3}} d x \quad \frac{1}{x^{3}}$ is not continuous on
$[-2,4]$. Discontinues at $x=0$. So we cannot apply the Fun. Chm. of Calculus This is an example of an improper integral. Some improper integrals can be evaluated... weill do this in Calculus II.

For now, if f has an infinite discontinuity anywhere in $[a, b]$, assume that $\int_{a}^{b} f(x) d x$ does not exist. Some of these integrals do exist....you will learn how to handle such integrals in Calculus 2.

The Fundamental Theorem of Calculus, Part II:
Let f be continuous on the interval $[a, b]$. Then the function g defined by
$g(x)=\int_{a}^{x} f(t) d t, \quad a \leq x \leq b \quad g$ is the area under the curve f from of to x is continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x)=f(x)$.

In other words, $\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)$.

Example 1: Find the derivative of the function $g(x)=\int_{3}^{x} \frac{t^{2}-2 t+4}{t-2} d t$. (this of corresponds to g in the $f(t)=\frac{t^{2}-2 t+4}{t-2}$ is continuous on $(3, \infty)$ theorem)

$$
g^{\prime}(x)=\frac{d}{d x}\left[\int_{3}^{x} \frac{t^{2}-2 t+4}{t-2} d t\right]=\frac{x^{2}-2 x+4}{x-2}
$$

Example 2: Find $\frac{d}{d x}\left(\int_{-2}^{\sin x} \sqrt{t^{4}+2} d t\right) . \quad f(\epsilon)=\sqrt{t^{4}+2}$ is continuous on $(-\infty, \infty)$
Area $=A=\int_{-2}^{\sin x} \sqrt{t^{4}+2} d t .1$ want to find $\frac{d A}{d x}$.
Let $u=\sin x$.
Then $A=\int_{-2}^{u} \sqrt{t^{a}+2} d t$

$$
\frac{d A}{d u}=f(u)=\sqrt{u^{4}+2}
$$

Chain
Rule:

$$
\begin{aligned}
& \frac{d A}{d u}=f(u)=\sqrt{u^{4}+2} \\
& \frac{d A}{d x}=\frac{d A}{d u} \cdot \frac{d u}{d x}=\left(\sqrt{u^{4}+2}\right)(\cos x)=\left(\sqrt{(\sin x)^{4}+2}\right)(\cos x) \\
&=\sqrt{\cos x \sqrt{\sin ^{4} x+2}}
\end{aligned}
$$

The mean (average) value of a function:
On the interval $[a, b]$, a continuous function $f(x)$ will have an average "height" c such that the rectangle with width $b-a$ and height c will have the same area as the area under the curve over $[a, b]$. This c is the average value of the function over $[a, b]$.

$$
\begin{aligned}
& \text { area of rectarale }=\text { area } \\
& \text { of Integrals: } \\
& b] \text {, then there exists a number } \mathrm{c} \text { in }[a, b] \text { such that } \\
& \text { (height) (base) } \\
& \int_{a}^{b} f(x) d x=f(c)(b-a) \text {. } \\
& \text { a order curve = (base) (height) of rectangle } \\
& \text { value of the function } f \text { on the interval }[a, b] .
\end{aligned}
$$

Mean Value Theorem for Integrals:
If f is continuous on $[a, b]$, then there exists a number c in $[a, b]$ such that

The y-value $f(c)$ is Area under curve $=(b a s e)$ (height) of rectuggle
This number c is called the average value of the function f on the interval $[a, b]$.

Example 8: Find the average value of the function $f(x)=4 x^{3}-x^{2}$ over the interval $[-3,2]$.

$$
\begin{aligned}
f_{\text {avg }} & =\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& =\frac{1}{2-(-3)} \int_{-3}^{2}\left(4 x^{3}-x^{2}\right) d x \\
& \left.=\frac{1}{5}\left[\frac{4 x^{-}}{4}-\frac{x^{3}}{3}\right]\right]_{-3}^{2}
\end{aligned}
$$

Example 9: Determine the average value of $f(x)=\sin x$ on the interval $[0, \pi]$.

$$
\begin{aligned}
& -81 \\
& =\frac{1}{5}\left[-74-\frac{8}{3}\right] \\
& =\frac{1}{5}\left[\frac{-222}{3}-\frac{8}{3}\right] \\
& =\frac{1}{5}\left(-\frac{230}{3}\right)
\end{aligned}
$$

$$
f_{a v g}=
$$

$$
\begin{array}{rlr}
& \frac{1}{b-a} \int_{0}^{b} f(x) d x & =\frac{1}{5} \\
= & \frac{1}{\pi-0} \int_{0}^{\pi} \sin x d x & =\frac{1}{5} \\
= & \left.\frac{1}{\pi}[-\cos x]\right|_{0} ^{\pi} & =\frac{1}{\pi}[-\cos \pi-(-\cos 0)] \\
& =\frac{1}{\pi}[-\cos \pi+\cos 0] & =\frac{1}{\pi}[-(-1)+1] \\
& =\frac{1}{\pi}[1+1]=\frac{2}{\pi}
\end{array}
$$

$$
=-\frac{230}{15}
$$

$$
=-\frac{46}{3}
$$

$$
\begin{aligned}
& \begin{array}{l}
b \\
\int \\
a
\end{array}(x) d x=f(c)(b-a) \\
& \frac{\frac{a}{b-a}}{\frac{1}{b-a} \int_{a}^{b-a} f(x)} \begin{array}{l}
\text { The average value of a continuous function } f \text { on the interval }[a, b] \text { is given by } \\
f(c)=f a v g
\end{array}
\end{aligned}
$$

