5.1: The Natural Logarithmic Function: Differentiation

An algebraic approach to logarithms:

$$
\begin{aligned}
& E x \cdot \log _{2} 8=\frac{3}{8} \\
& \text { because } 2^{8}=8,8,
\end{aligned} \begin{aligned}
& \text { Definition: } \log _{b} x=y \text { is equivalent to } b^{y}=x . \\
& \text { The functions } f(x)=b^{x} \text { and } g(x)=\log _{b} x \text { are inverses of each other. } \\
& b \text { is called the base of the logarithm. }
\end{aligned}
$$

The logarithm of base e is called the natural logarithm, which is abbreviated "In".

The natural logarithm:

$$
\ln x=\log _{e} x .
$$

Therefore $\ln x=y$ is equivalent to $e^{y}=x$ and the functions $f(x)=e^{x}$ and $g(x)=\ln x$ are inverses of each other.

A calculus approach to the natural logarithm:

For $x>1, \ln x$ can be interpreted as the area under the graph of $y=\frac{1}{t}$ from $t=1$ to $t=x$.

Note: The integral is not defined for $x<0$.

For $x=1, \ln x=\int_{1}^{1} \frac{1}{t} d t=0$.
For $x<1, \ln x=\int_{1}^{x} \frac{1}{t} d t=-\int_{x}^{1} \frac{1}{t} d t<0$.
Recall: \quad The Fundamental Theorem of Calculus, Part II:
Let f be continuous on the interval $[a, b]$. Then the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t, \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x)=f(x)$.

Apply the Fundamental Theorem of Calculus to the function $f(t)=\frac{1}{t}$.

$$
\leftrightarrow \frac{d}{d x}\left(\int_{1}^{x} \frac{1}{t} d t\right)=\frac{1}{x}
$$

This means that $\frac{d}{d x}(\ln x)=\frac{1}{x}$. (be cause $\left.\ln x=\int_{1}^{x} \frac{1}{t} d t\right)$
The Derivative of the Natural Logarithmic Function

$$
\frac{d}{d x}(\ln x)=\frac{1}{x}
$$

Laws of Logarithms:

If x and y are positive numbers and r is a rational number, then:

1. $\ln (x y)=\ln x+\ln y$
2. $\ln \left(\frac{x}{y}\right)=\ln x-\ln y$

Note: This also gives us $\ln \left(\frac{1}{x}\right)=-\ln x$.
3. $\ln \left(x^{r}\right)=r \ln x$

Example 1: Expand $\ln \left(\frac{x^{3} \sqrt{x+5}}{x^{2}+4}\right)$.

$$
\begin{aligned}
& \ln \left(\frac{x^{3}(x+5)^{1 / 2}}{x^{2}+4}\right)=\ln \left[x^{3}(x+5)^{1 / 2}\right]-\ln \left(x^{2}+4\right) \\
& =\ln x^{3}+\ln (x+5)^{1 / 2}-\ln \left(x^{2}+4\right)=\frac{1}{3} \ln x+\frac{1}{2} \ln (x+5)-\ln \left(x^{2}+4\right) \\
& \text { The graph of } y=\ln x: \\
& \text { It can be shown that } \lim _{x \rightarrow \infty} \ln x=\infty \text { and that } \lim _{x \rightarrow 0^{+}}=-\infty .
\end{aligned}
$$

For $x>0, \frac{d^{2} y}{d x^{2}}=-\frac{1}{x^{2}}<0$ so $y=\ln x$ is concave down on $(0, \infty)$.
Already knee that

$$
\begin{aligned}
\ln (1)= & 0 \\
& I V T
\end{aligned}
$$

 There is a
Because $\ln 1=0$ and $y=\ln x$ is increasing to arbitrarily large values $\left(\lim _{x \rightarrow \infty} \ln x=\infty\right)$, the c such that
Intermediate Value Theorem guarantees that there is a number x such that $\ln x=1$. That number $f(c)=k$ is called e.

$$
\begin{aligned}
& \text { e. } \ln (b)=f(b)=100 \text { 个 } \\
& e \approx 2.71828182845904523536 \\
& \ln (1)=f(1)=0
\end{aligned}
$$

$$
\text { Because ln } \ln \leqslant 1 \leq \ln b
$$ There must be a (e is in irrational number -it cannot be written as a decimal that ends or repeats.) $<\epsilon(1, b)$ such

$$
\ln e=1
$$ that $f(c)=1$

Note: $u=2 x^{5}+3 x$, So if $f(x)=\ln \left(2 x^{5}+3 y\right)$ then $f(u)=\ln u \quad$ 5.1.4
Example 2: Find $\frac{d y}{d x}$ for $y=\ln \left(2 x^{5}+3 x\right) . \quad \int \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d y}{d x}$ (chain rule)

$$
\begin{aligned}
& \text { Example 2: Find } \frac{y}{d x} \text { for } y=\ln \left(2 x^{3}+3 x\right) . \\
& \begin{aligned}
\frac{d y}{d x} & =\frac{1}{2 x^{5}+3 x} \cdot \frac{d}{d x}\left(2 x^{5}+3 x\right) \\
& =\frac{1}{2 x^{5}+3 x} \cdot\left(10 x^{4}+3\right)=\frac{1}{u} \cdot\left(10 x^{4}+3\right) \\
\text { Note: } \frac{d}{d x}(\ln u) & =\frac{1}{u} \frac{d u}{d x} \text { or, written another way, } \frac{d}{d x}(\ln g(x))=\frac{g^{\prime}(x)}{g(x)} .
\end{aligned}=\frac{1}{2 x^{5}+3-x} \cdot\left(10 x^{4}+3\right) \\
& =\frac{10 x^{4}+3}{2 x^{5}+3 x}
\end{aligned}
$$

$$
E_{x} 2 \frac{1}{2}
$$

Example 3: Determine $\frac{d}{d x}(\ln (\cos x))$.

$$
\begin{aligned}
\frac{d}{d x}(\ln (\cos x)) & =\frac{1}{\cos x} \frac{d}{d x}(\cos x) \\
& =\frac{1}{\cos x}(-\sin x) \\
& =-\tan x
\end{aligned}
$$

Example 4: Find the derivative of $f(x)=\frac{1}{\ln x}$.

$$
\begin{aligned}
y & =\cos \left(2 x^{5}+3 x\right) \\
\frac{d y}{d x} & =-\sin \left(2 x^{5}+3 x\right) \frac{d}{d x}\left(2 x^{5}+3 x\right) \\
& =-\left(\sin \left(2 x^{5}+3 x\right)\right)\left(10 x^{5}+3\right) \\
& =-\left(10 x^{5}+3\right) \sin \left(2 x^{5}+3 x\right)
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=(\ln x)^{-1} \\
& f^{\prime}(x)=-1(\ln x)^{-2} \frac{d}{d x}(\ln x)=-1(\ln x)^{-2}\left(\frac{1}{x}\right)=-\frac{1}{x(\ln x)^{2}}
\end{aligned}
$$

Example 5: Find the derivative of $f(x)=x^{2} \ln x$. Need Product Rule:

$$
\begin{gathered}
f^{\prime}(x)=x^{2} \frac{d}{d x}(\ln x)+(\ln x) \frac{d}{d x}\left(x^{2}\right)=x^{2}\left(\frac{1}{x}\right)+(\ln x)(2 x) \\
=x+2 x \ln x=x(1+2 \ln x)
\end{gathered}
$$

Example 6: Find the derivative of $y=\frac{\ln x}{4 x}$.
Quotient Rule:

$$
\begin{aligned}
& \text { the derivative of } y=\frac{\ln x}{4 x} \cdot \frac{d}{d \ln x)-(\ln x) \frac{d}{d x}(4 x)} \\
& \frac{d y}{d x}=\frac{(4 x)}{(4 x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
=\frac{4 x\left(\frac{1}{x}\right)-(\ln x)(4)}{16 x^{2}} & =\frac{4-4 \ln x}{16 x^{2}}=\frac{4(1-\ln x)}{16 x^{2}} \\
& =\frac{1-\ln x}{4 x^{2}}
\end{aligned}
$$

Example 7: Find the derivative of $g(t)=\ln (7 t)$.

$$
g^{\prime}(t)=\frac{1}{7 t} \frac{\alpha}{d t}(t)=\frac{1}{7 t}(t)=\frac{1}{t}
$$

Nolo: $g(t)=\ln (7 t)=\ln (T)+\ln (t)$
with graph shift it vertically by $\ln 7$.

$$
\begin{aligned}
& \frac{\text { Example 8: }}{} \text { Determine the derivative of } f(x)=\frac{\ln 6 x}{(x+4)^{5}} \\
f^{\prime}(x) & =\frac{(x+4)^{5} \frac{d}{d x}(\ln (6 x))-(\ln (6 x)) \frac{d}{d x}(x+4)^{5}}{(x+4)^{10}} \\
& =\frac{(x+4)^{5}\left(\frac{1}{6 x}\right)(6)-(\ln (6 x))(5)(x+4)^{4}(1)}{(x+4)^{10}} \\
& =\frac{(x+4)^{5}\left(\frac{1}{x}\right)-5(x+4)^{4} \ln (6 x)}{(x+4)^{6}} \\
& =\frac{(x+4)^{4}\left[(x+4)\left(\frac{1}{x}\right)-5 \ln (6 x)\right]}{(x+4)^{6}}=\frac{(x+4)\left(\frac{1}{x}\right)-5 \ln (6 x)}{(x+4)^{6}}\left(\frac{x}{x}\right) \\
& =\frac{x+4-5 \cdot x \ln (6 x)}{4(x+4)^{6}} \\
& \text { Logarithmic differentiation: } \\
& \text { To differentiate } y=f(x):
\end{aligned}
$$

1. Take the natural logarithm of both sides.
2. Use the laws of logarithms to expand.
3. Differentiate implicitly with respect to x.
4. Solve for $\frac{d y}{d x}$.

Example 9: Use logarithmic differentiation to find the derivative of

$$
y=\left(x^{2}+2\right)^{5}(2 x+1)^{3}(6 x-1)^{2} .
$$

Take ln of both sides: $\ln y=\ln \left[\left(x^{2}+2\right)^{5}(2 x+1)^{3}(6 x-1)^{2}\right]$
Apply log properties:

$$
\begin{array}{ll}
\text { Apply log properties: } & \left.\ln y=5 \ln \left(x^{2}+2\right)+3 \ln (2 x+1)+2 \ln (2 x+1)+2 \ln (6 x-1)\right] \\
\text { Implicit diff: } & \frac{d}{d x}(\ln y)=\frac{d}{d x}\left[5 \ln \left(x^{2}+2\right)+3 \ln (2 x+1)\right. \\
& \frac{1}{y} \cdot \frac{d y}{d x}=5\left(\frac{1}{x^{2}+2}\right)(2 x)+3\left(\frac{1}{2 x+1}\right)(2)+2\left(\frac{1}{6 x-1}\right)(6) \\
\frac{d y}{d x}=y\left[\frac{10 x}{x^{2}+2}+\frac{6}{2 x+1}+\frac{12}{6 x-1}\right] \Rightarrow \frac{d y}{d x}=\underbrace{\left(x^{2}+2\right)^{5}(2 x+1)^{3}(6 x-1)^{2}}_{y}\left[\frac{10 x}{x^{2}+2}+\frac{6}{2 x+1}+\frac{12}{6 x-1}\right]
\end{array}
$$

Example 10: Find y^{\prime} for $y=\frac{\left(x^{3}+1\right)^{4} \sin ^{2} x}{\sqrt[3]{x}}$.

$$
\begin{aligned}
y & =\frac{\left(x^{3}+1\right)^{4}(\sin x)^{2}}{x^{1 / 3}} \\
\ln y & =\ln \frac{\left(x^{3}+1\right)^{4}(\sin x)^{2}}{x^{1 / 3}} \\
\ln y & =4 \ln \left(x^{3}+1\right)+2 \ln (\sin x)-\frac{1}{3} \ln x \\
\frac{1}{y} \cdot \frac{d y}{d x} & =4\left(\frac{1}{x^{3}+1}\right)\left(3 x^{2}\right)+2\left(\frac{1}{\sin x}\right)(\cos x)-\frac{1}{3} \cdot \frac{1}{x} \\
\frac{d y}{d x} & =y\left[\frac{12 x^{2}}{x^{3}+1}+2 \cot x-\frac{1}{3 x}\right] \\
& =\frac{\left(x^{3}+1\right)^{4} \sin ^{2} x}{3 \sqrt{x}}\left[\frac{12 x^{2}}{x^{3}+1}+2 \cot x-\frac{1}{3 x}\right]
\end{aligned}
$$

$E x \cdot 4 \frac{1}{2}:$

$$
\begin{aligned}
& \text { Ex } 4 \frac{1}{2} ; f(x)=\frac{1}{\ln (\cos x)} \\
& f(x)=\left(\ln (\cos x)^{-1}\right. \\
& f^{\prime}(x)=-1\left(\ln (\cos x)^{-2} \frac{d}{d x}(\ln (\cos x))\right. \\
&=-1\left(\ln (\cos x)^{-2} \frac{1}{\cos x} \frac{d}{d x}(\cos x)\right. \\
&=-\frac{1}{(\ln (\cos x))^{2} \cos x}(-\sin x)=\frac{\sin x}{(\ln (\cos x))^{2} \cos x} \\
&=\frac{\tan x}{\left(\ln (\cos x)^{2}\right.}
\end{aligned}
$$

Ex6: $y=\frac{\ln x}{4 x}$
Using product Rule: $y=(\ln x)(4 x)^{-1}$

$$
\begin{aligned}
\frac{d y}{d x} & =(\ln x) \frac{d}{d x}(4 x)^{-1}+(4 x)^{-1} \frac{d}{d x}(\ln x) \\
& =(\ln x)(-1)(4 x)^{-2}(4)+(4 x)^{-1}\left(\frac{1}{x}\right) \\
& =-\frac{4 \ln x}{(4 x)^{2}}+\frac{1}{(4 x)(x)}=-\frac{4^{1} \ln x}{1 / 4 x^{2}}+\frac{1}{4 x^{2}} \\
& =-\frac{\ln x}{4 x^{2}}+\frac{1}{4 x^{2}}=\frac{1-\frac{4}{\ln x}}{4 x^{2}}
\end{aligned}
$$

