7.2: Volumes: The Disk Method
(Finding volumes of solids with known cross-sections--disks, washers, or other parallel slices)

Slicing by parallel planes (for solids with known cross sections):

Cross sections of area $A(x)$ perpendicular to x-axis:

$$
V=\int_{a}^{b} A(x) d x
$$

Cross sections of area $A(y)$ perpendicular to axis:

$$
V=\int_{a}^{b} A(y) d y
$$

Example 1: \uparrow Find the volume of the tetrahedron shown.

Need to write the area of t triangular slice as 9 function of x.

$$
\begin{aligned}
& A_{\text {triangular }}=\frac{1}{2}(\text { base }) \text { (height) } \\
& \text { slit } \\
& =\frac{1}{2}(y)(z)
\end{aligned}
$$

We want to get y and z
Find egn of $L_{\text {in e }} L_{1}$:
 in terms of x

$$
\begin{aligned}
& z=m x+b \\
& z=-\frac{4}{7} x+4 \quad(=g n \text { of } L 1)
\end{aligned}
$$

$$
\begin{aligned}
\text { slope } & =\frac{s-0}{0-7}=-\frac{s}{7} \\
y & =m x+b \\
y & =-\frac{5}{7} x+5 \quad \begin{array}{l}
\text { contd on } \\
\text { extra page } \\
\text { at end }
\end{array}
\end{aligned}
$$

Example 2: Find the volume of a pyramid with square base with side length L and height h

contr on extra page
Example 3: Consider a sphere of radius 5. Find the volume of a cap of height 2.

Volume of 1 slice: πr^{2} (thekress)
$\begin{aligned} V=\int \pi r^{2} d y, \text { where } r & =\text { radius of } \\ & 1 \text { slice }\end{aligned}$
$=\int \pi x^{2} d y$

$$
r=x
$$

Relationship
between ya wad: $x^{2}+y^{2}=5^{2}$
$x^{2}=25-y^{2}$

Ex 4: Find volume s whole sphere.

$$
\begin{aligned}
& V=\pi\left(25 y-\frac{y^{3}}{3}\right)_{0}^{5}=\text { top half of sphere } \\
& \begin{aligned}
V_{\text {sphere }} & =\left.2 \pi\left(25 y-\frac{y^{3}}{3}\right)\right|_{0} ^{5} \\
& =2 \pi\left(25(5)-\frac{5^{3}}{3}-\left(25(0)-\frac{0}{3}\right)\right) \\
& =2 \pi\left(50-\frac{155}{3}-0\right) \\
& =2 \pi\left(\frac{35}{3}-\frac{125}{3}\right)= \\
& =2 \pi\left(\frac{250}{3}\right)=\frac{5 \frac{00 \pi}{3}}{3}
\end{aligned}
\end{aligned}
$$

$$
=\left.\pi\left(25 y-\frac{y^{3}}{3}\right)\right|_{3} ^{5}
$$

$$
=\pi\left(25(5)-\frac{5^{3}}{3}-\left(25(3)-\frac{3^{3}}{3}\right)\right)
$$

$$
=\pi\left(125-\frac{125}{3}-75+9\right)^{3}
$$

$$
=\pi\left(59-\frac{125}{3}\right)=\pi\left(\frac{177}{3}-\frac{125}{3}\right)
$$

$$
=\pi\left(\frac{52}{3}\right)=\frac{52 \pi}{3}
$$

From memorized formula,

$$
\begin{aligned}
V= & \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(5)^{3} \\
& \frac{4 \pi(125)}{3}=\frac{300 \pi}{3}
\end{aligned}
$$

The disk and washer method:

$$
V \approx \sum_{i=1}^{n} A_{i} \Delta x \text { and so } V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A_{i}^{\boldsymbol{q}} \Delta x .
$$

For circular cross-sectional areas:

$$
V \approx \sum_{i=1}^{n} \pi R\left(x_{i}\right)^{2} \Delta x \text { and so } V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \pi R\left(x_{i}\right)^{2} \Delta x
$$

$$
\text { Area }=\pi R^{2}
$$

Solids formed by rotation:
Horizontal Axis of Revolution:

$$
V=\pi \int_{a}^{b}[R(x)]^{2} d x
$$

Vertical Axis of Revolution:

$$
V=\pi \int_{c}^{d}[R(y)]^{2} d y
$$

Example 5: Find the volume of the solid generated by revolving the area bounded by $y=x^{2}$, $x=0$, and $y=4$ around the y-axis.

$$
\begin{aligned}
& 9 \\
& y=x^{2}
\end{aligned}
$$

$$
\text { Volume of } 1 \text { sick }=\pi r^{2} d y
$$

$$
\begin{aligned}
y=x^{2} \longrightarrow & \int_{0}^{4} \pi(y) d y \\
& =\pi \int_{0}^{4} y d y=\left.\frac{\pi y^{2}}{2}\right|_{0} ^{4} \\
& =\frac{\pi(4)^{2}}{2}-\frac{\pi(0)^{2}}{2} \\
& =\frac{16 \pi}{2}=8 \pi
\end{aligned}
$$

Example 6: Find the volume of a sphere of radius R,

$V_{\text {slice }}=\pi(\text { radius of slice })^{2} d y$

$$
\underset{\text { shohere }}{V_{\text {sher }}}=2 \int_{0}^{R} \pi x^{2} d y
$$

$$
=2 \int_{0}^{R} \pi\left(R^{2}-y^{2}\right) d y
$$

$$
\begin{aligned}
& =2 \pi \int_{0}^{R}\left(R^{2}-y^{2}\right) d y=\left.2 \pi\left[R^{2} y-\frac{y^{3}}{3}\right]\right|_{0} ^{R} \\
& =2 \pi\left[R^{2}(R)-\frac{R^{3}}{3}-0\right]=2 \pi\left[R^{3}-\frac{R^{3}}{3}\right] \\
& =2 \pi\left[\frac{2 R^{3}}{3}\right]=\frac{4 \pi R^{3}}{3}=\frac{4}{3} \pi R^{3}
\end{aligned}
$$

Example 7: Find the volume of the solid generated by revolving the area bounded by $y=5-x^{2}$ and $y=4$ around the line $y=4$.

C

$$
\begin{aligned}
& \text { radius } \\
& y-4\{ \\
& V_{\text {slice }}=\pi r^{2} d x \\
& V_{\text {total }}=\int_{-1}^{1} \pi r^{2} d x \\
&=\int_{-1}^{1} \pi(y-4)^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& 2 \pi\left(x+2 x^{3}+\frac{x^{5}}{5}\right)^{\prime} \quad 5-x^{2}=4 \\
& \left.2 \pi\left(x-\frac{2 x^{3}}{3}+\frac{x^{5}}{5}\right) \left\lvert\, \begin{array}{rl}
5-x^{2} & =4 \\
5-4 & =x^{2} \\
1 & =x^{2}
\end{array} \quad y=5-x^{2}\right.\right) \longrightarrow \int_{-1}^{1} \pi\left(5-x^{2}-4\right)^{2} d x \\
& =\pi \int_{-1}^{-1}\left(1-x^{2}\right)^{2} d x \\
& 2 \pi\left(1-\frac{2\left(T^{3}\right)^{5}}{3}+\frac{5}{5}-0\right) \\
& x= \pm 1 \\
& 2 \pi\left(1-\frac{2}{3}+\frac{1}{5}\right) \\
& =\pi \int_{-1}^{1}\left(1-2 x^{2}+x^{4}\right) d x \\
& \left.=2 \pi\left(\frac{15}{15}-\frac{10}{15}+\frac{3}{15}\right)=2 \pi\left(\frac{8}{15}\right)=\frac{16 \pi}{15}\right]=2 \pi \int_{0}^{1}\left(1-2 x^{2}+x^{4}\right) d x
\end{aligned}
$$

Example 8: Find the volume of the solid generated by revolving the area bounded by $y=x^{2}$

$$
\begin{aligned}
& r_{\text {max }} \\
& =y_{\text {small }} \\
& =x^{2}
\end{aligned}
$$

Find intersection: Set y^{\prime} 's equal

$$
\begin{aligned}
& x^{2}=3 x \\
& x^{2}-3 x=0 \\
& x(x-3)=0 \\
& x=0, x=3
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {lalice }}=\pi R_{\text {br }}^{2} \Delta x-\pi r_{\text {small }}^{2} \Delta x \\
& V=\int_{0} \pi R_{\text {bis }}^{2} d x-\int_{0}^{3} \pi r_{\text {small }}^{2} d x \\
&= \pi \int_{0}^{3}(3 x)^{2} d x-\pi \int_{0}^{3}\left(x^{2}\right)^{2} d x
\end{aligned}
$$

Ex (cont'd Area of 1 slic:

$$
\begin{aligned}
A & =\frac{1}{2} \text { (base)(leight) } \\
& =\frac{1}{2}(y)(z) \\
A(x) & =\frac{1}{2}\left(-\frac{5}{2} x+5\right)\left(-\frac{4}{7} x+4\right)
\end{aligned}
$$

$$
\text { Vol ume }=\sum \text { (Areas st slices) }(d x)=\sum \frac{1}{2}\left(-\frac{5}{2} x+5\right)\left(-\frac{4}{2} x+4\right) d x
$$

$$
\begin{aligned}
& V=\int_{0}^{7} \frac{1}{2}\left(-\frac{5}{7} x+5\right)\left(-\frac{4}{7} x+4\right. \\
& \left(\frac{20}{49} x^{2}-\frac{20}{2} x-\frac{20}{7} x+20\right) d x
\end{aligned}
$$

$$
=\frac{1}{2} \int_{0}^{1}\left(\frac{20}{49} x^{2}-\frac{40}{1} x+20\right) d x
$$

$$
=\frac{1}{2}(20) \int_{0}^{7}\left(\frac{1}{49} x^{2}-\frac{2}{7} x+1\right) d x
$$

$$
=\left.10\left[\frac{1}{49} \cdot \frac{x^{3}}{3}-\frac{2}{2} \cdot \frac{x^{2}}{2}+x\right]\right|_{0} ^{7}
$$

$$
=10\left[\frac{x^{3}}{147}-\frac{x^{2}}{7}+x\right]_{0}^{7}
$$

6

$$
\begin{aligned}
& =10\left[\frac{7^{3}}{147}-\frac{7^{2}}{7}+7-0\right] \\
& =10\left[\frac{343}{147}-7+7\right]=\frac{3430}{147} \approx 23 . \overline{3}
\end{aligned}
$$

Ex 2 contd: Line $y=\frac{h}{21} x$
Total volume $=\int_{n}(2 y)^{2} d x=\int 4 y^{2} d x$

$$
\begin{aligned}
&= \int_{0}^{h} 4\left(\frac{L}{2 h} x\right)^{2} d x \\
&=\int_{0}^{h} 4\left(\frac{L^{2}}{4 h^{2}}\right) x^{2} d x \\
&=\frac{4 L^{2}}{4 h^{2}} \int_{0}^{h} x^{2} d x \\
&=\frac{L^{2}}{h^{2}} \int_{0}^{h} x^{2} d x= \\
&\left.=\left.\frac{L^{2}}{h^{2}} \cdot \frac{x^{3}}{3}\right|_{0} ^{h}=\frac{L^{2}}{h^{2}} \frac{h^{3}}{3}-\frac{0^{3}}{3}\right) \\
&=\frac{L^{2} h^{3}}{3 h^{2}}=\frac{L^{2} h}{3} \\
&=\frac{\frac{1}{3} L^{2} h}{3}
\end{aligned}
$$

