7.3: Volume: The Shell Method

Finding volume by cylindrical shells:
Vertical Axis of Revolution:

$$
V=\int_{a}^{b} 2 \pi x f(x) d x \text { where } a \leq x \leq b
$$

Horizontal Axis of Revolution:

$$
V=\int_{c}^{d} 2 \pi y g(y) d y, \text { where } c \leq y \leq d
$$

Volume of 1 shall

Example 1: Find the volume of the solid formed by rotating the region bounded by $y=4 x$, $y=0$, and $x=1$ around the y-axis.

$$
\begin{aligned}
V_{\text {shell }} & =2 \pi r h d x \\
Y & =\int_{0}^{1} 2 \pi r h d x \\
& =\int_{0}^{1} 2 \pi x y d x \\
& =\int_{0}^{1} 2 \pi x(4 x) d x=8 \pi \int_{0}^{1} x^{2} d x \\
& \left.=8 \pi\left(\frac{x^{3}}{3}\right)\right)_{0}^{1}=8 \pi\left(\frac{1^{3}}{3}-\frac{0^{3}}{3}\right) \\
& =8 \pi\left(\frac{1}{3}\right)=\frac{8 \pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
x=\sqrt{y} & \Rightarrow x^{2}=y \\
& \prod^{p} x=\sqrt{y} \text { is right half }
\end{aligned}
$$

Example 2: Find the volume of the solid formed by rotating the region bounded by $y=x$ and $x=\sqrt{y}$ around the x-axis.

Find intersection:

$$
x=\sqrt{y}
$$

$$
\begin{aligned}
& y=x \Rightarrow x=\sqrt{x} \\
& \text { square both sides: } x^{2}=x \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

$$
V_{1 \text { ghat }}=2 \pi r h d y
$$

$$
V=\int 2 \pi r h d y
$$

$$
=\int_{0}^{1} 2 \pi y\left(x_{2}-x_{1}\right) d y
$$

$$
\begin{aligned}
& =\int_{0}^{1} 2 \pi y(\sqrt{y}-y) d y=2 \pi \int_{0}^{1}\left(y^{3 / 2}-y^{2}\right) d y \\
& =\left.2 \pi\left(\frac{y^{5 / 2}}{5 / 2}-\frac{y^{3}}{3}\right)\right|_{0} ^{1}=\left.2 \pi\left(\frac{2 y^{5 / 2}}{5}-\frac{y^{3}}{3}\right)\right|_{0} ^{1} \\
& =2 \pi\left(\frac{2(1)^{5 / 2}}{5}-\frac{13}{3}-0\right)=2 \pi\left(\frac{2}{5}-\frac{1}{3}\right)=2 \pi\left(\frac{6}{15}-\frac{5}{15}\right)
\end{aligned}
$$

Example 3: Find the volume of the solid formed by revolving the region bounded by the $=2 \pi\left(\frac{1}{5}\right)$ graphs of $y=x^{2}+1, y=0, x=0$, and $x=1$ about the y-axis.

Note: This one is much easier with, shells than with disks/washers!

Find intersection: $y=x^{2}+1$

$$
=\frac{2 \pi}{15}
$$

$$
\begin{array}{r}
x=1 \Rightarrow y=1^{2}+1 \\
y=2
\end{array}
$$

$$
V_{\text {shell }}=2 \pi r h d x
$$

(cylinder with bowl-
shaped depression in the top)

$$
V=\int_{-1} 2 \pi r h d x
$$

$$
=\int_{0}^{1} 2 \pi x y d x
$$

$$
=\int_{0}^{1} 2 \pi x\left(x^{2}+1\right) d x
$$

$$
\begin{aligned}
& =2 \pi \int_{0}^{1}\left(x^{3}+x\right) d x=\left.2 \pi\left(\frac{x^{4}}{4}+\frac{x^{2}}{2}\right)\right|_{0} ^{1} \\
& =2 \pi\left(\frac{4}{4}+\frac{1^{2}}{2}-0\right)=2 \pi\left(\frac{3}{4}\right)=\frac{6 \pi}{4} \\
& =\frac{3 \pi}{2}
\end{aligned}
$$

Example 4: Use the shell method to find the volume of a right circular cone of height h and radius M. R.

1 chose to put the pointy end down so that my linewould go through the origin. Find eque of line: Slope $=\frac{h}{R}$
 $y=m x+b$

$$
y=\frac{h}{12} x+0
$$

$$
y=\frac{h}{R} x
$$

$V_{\text {shell }}=2 \pi r h d x$

$$
V=\int 2 \pi r h d x=\int_{0}^{R} 2 \pi x(h-y) d x
$$

$$
=\int_{0}^{R} 2 \pi x\left(h-\frac{h}{R} x\right) d x=2 \pi \int_{0}^{R}\left(h x-\frac{h}{R} x^{2}\right) d x
$$

$=\left.2 \pi\left[\frac{h x^{2}}{2}-\frac{h}{R} \cdot \frac{x^{3}}{3}\right]\right|_{0} ^{R}=2 \pi\left[\frac{h x^{2}}{2}-\frac{h x^{3}}{3 R}\right]_{0}^{R}$

$$
=2 \pi\left[\frac{h R^{2}}{2}-\frac{h R^{3}}{3 R}-0\right]=2 \pi\left[\frac{h R^{2}}{2}-\frac{h R^{2}}{3}\right]=2 \pi\left[\frac{3 h R^{2}}{6}-\frac{2 h R^{2}}{6}\right]
$$

Example 5: Find the volume of the solid formed by revolving the region bounded by the $=2 \pi\left(\frac{h R^{2}}{6}\right)$ graphs of $y=4 x-x^{2}, y=8 x-2 x^{2}$ about the line $x=-2$.
complete the square to find the vertices of the parabolas:

$$
\begin{aligned}
y= & -x^{2}+4 x \\
y= & -\left(x^{2}-4 x\right) \\
y= & -\left(x^{2}-4 x+4\right)+4 \\
y= & -(x-2)^{2}+4 \\
& \text { Vertex }(2,4) \\
& \quad \text { opens down }
\end{aligned}
$$

Find x-intercept: $0=-x^{2}+4 x$

$$
\begin{aligned}
& 0=-x(x-4) \\
& 0=-x(x=0, x=4
\end{aligned}
$$

$$
x=0, x=4
$$

$$
\begin{aligned}
& y=-2 x^{2}+8 x \\
& y=-2\left(x^{2}-4 x\right) \\
& y=-2\left(x^{2}-4 x+4\right)+0 \\
& y=-2(x-2)^{2}+8 \\
& \quad \text { vertex }(2,8)
\end{aligned}
$$

opens down
Find x-intrupts:

$$
\begin{aligned}
& 0=-2 x^{2}+8 x \\
& 0=-2 x(x-4) \\
& x=0, x=4
\end{aligned}
$$

ugh, I cannot draw it... Have you seen a bundt pan? Think of a flat plate with a parabolic hump going around the outer half,

$$
\begin{aligned}
& V \text { shell }
\end{aligned}=2 \pi r h d x ~ \begin{aligned}
V & =\int_{0} 2 \pi r h d x \\
& =\int_{0}^{1} 2 \pi x\left(y_{2}-y_{1}\right) d x=2 \pi \int_{0}^{4}(2+x)\left(\left(8 x-2 x^{2}\right)-\left(4 x-x^{2}\right)\right) d x \\
& =2 \pi \int_{0}^{4}(2+x)\left(8 x-2 x^{2}-4 x+x^{2}\right) d x=2 \pi \int_{0}^{4}(x+2)\left(-x^{2}+4 x\right) d x \\
& =2 \pi \int_{0}^{4}\left(-x^{3}+4 x^{2}-2 x^{2}+8 x\right) d x=2 \pi \int_{0}^{4}\left(-x^{3}+2 x^{2}+8 x\right) d x \\
& =\left.2 \pi\left[-\frac{x^{4}}{4}+\frac{2 x^{3}}{3}+\frac{8 x^{2}}{2}\right]\right|_{0} ^{4}=2 \pi\left[-\frac{4^{4}}{4}+\frac{2\left(4^{3}\right)}{3}+4(4)^{2}-0\right] \\
& =2 \pi\left[-64+\frac{128}{3}+64\right]=2 \pi\left[0+\frac{128}{3}\right] \\
& =2 \pi\left[\frac{128}{3}\right]=\frac{256 \pi}{3}
\end{aligned}
$$

Note: This problem would be a serious pain using disks/washers. Shells are much easier!

