2.6: Related rates

General idea for solving rate problems:

1. Draw a sketch if applicable. The only dimensions you put on your sketch should be those that do not change.
2. Write down, in calculus notation, the rates you know and want.
3. Write an equation relating the quantities that are changing.
4. Differentiate it implicitly, with respect to time.
5. Substitute known quantities.
6. Solve for the required rate.

Example 1: The radius of a sphere is increasing at the rate of 2 inches per minute. Find the rate of change in volume when the radius is 6 inches.

Write an equation
Know: $\frac{d r}{d t}=+2 \mathrm{in} / \mathrm{min}$
Want: $\frac{d W}{d t}$
Whens $=$ Gin
relationship between the
in want and knew, quantities

$$
\begin{aligned}
& \begin{array}{l}
V=\frac{4}{3} \pi r^{3} \\
\frac{d}{d t}(y)=\frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right)
\end{array}\left\{\begin{array}{r}
\left.\frac{d V}{d t}\right|_{r=6} \\
\begin{array}{c}
d r \\
2 t \\
2
\end{array}=2
\end{array}\right. \\
& \frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^{2} \frac{d r}{d t}\right)=4 \pi(6 i n)^{2}\left(\frac{2 i n}{\sin }\right) \\
& \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t} \\
& =144 \pi \cdot 2 \frac{i n}{3}_{\mathrm{min}}^{3} \\
& =288 \pi \mathrm{in}^{3} / \mathrm{min}
\end{aligned}
$$

Example 2: A conical tank (with vertex down) has a diameter of 10 feet at the top and is 12 feet deep. If water is draining out at 10 cubic feet per minute, what is the rate of change in depth when the water is 8 feet deep?
Know: $\frac{d V}{d t}=-10 \mathrm{ft}^{3} / \mathrm{min}$
Want: $\frac{d w}{d t}$
When: $w=8 \mathrm{ft}$
$y=$-volume of water

Example 3: A ladder 25 feet long is leaning against a wall. The base of the ladder is pulled away at 2 feet per second. How fast is the top of the ladder moving when the base is 9 feet away? What about when it is 24 feet away?

Need eqn relating
x and y :

Know: $\frac{d x}{d t}=+2 \mathrm{ft} / \mathrm{s}$
want: $\frac{d y}{d t}$
when:

$$
\begin{aligned}
& x=9 \mathrm{ft} \\
& x=24 \mathrm{ft}
\end{aligned}
$$

$$
\frac{d}{d t}\left(x^{2}+y^{2}\right)=\frac{d}{d t}\left(625 P^{2}\right)
$$

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0
$$

$2 y \frac{d y}{d t}=-2 x \frac{d x}{d t}$
$\frac{d y}{d t}=\frac{-2 x \frac{d x}{d t}}{3 y}=-\frac{x \frac{d x}{d t}}{y}$
cont'd at end of roles.
Example 4: A particle is moving along the parabola $y^{2}=4 x+8$. As it passes through the point $(7,6)$ its y-coordinate is increasing at the rate of 3 units per second. How fast is the x-coordinate changing at this instant?

$$
\begin{aligned}
& y^{2}=4 x+8 \\
& y^{2}=4(x+2)
\end{aligned}
$$

Looks like $y^{2}=x$
So $\frac{1}{4} y^{2}=x$
then $\frac{1}{4} y^{2}=x+2$
vertex: $(-2,0)$

Know: $\frac{d y}{d t}={ }^{+} \frac{3 u n i t}{\sec }$ want: $\frac{d x}{d t}$

When: $x=7$

$$
y=6
$$

* Need a relationship (equation) between x and y.

Implies Diff:

$$
\begin{aligned}
& y^{2}=4 x+8 \\
& \frac{d}{d t}\left(y^{2}\right)=\frac{d}{d t}(4 x+8) \\
& 2 y \frac{d y}{d t}=4 \frac{d x}{d t}+0 \\
& \frac{d x}{d t}=\frac{2 y \frac{d y}{d t}}{4}=\frac{y}{2} \cdot \frac{d y}{d t} J \\
& \rightarrow x \underbrace{7, y=6, \frac{d y}{d t}}_{y y}=3 \frac{\sin i s}{\sec } \\
& \frac{d x}{d t}=\frac{6}{2} \cdot 3 \mathrm{un} \cdot \mathrm{~d} / \mathrm{s} \\
& =9 \text { units } / \mathrm{sec}
\end{aligned}
$$

Example 5: A 6-foot tall man walks away from a 30-foot tall lamppost at a speed of 400 feet per minute. When he is 50 feet away from the lamppost, at what rate is his shadow lengthening? How fast is the tip of his shadow moving?

Know: $\frac{d x}{d t}=4400 \mathrm{ft} / \mathrm{min}$

Want: $\frac{d s}{d t}, \frac{d y}{d t}$
When: $x=50 \mathrm{ft}$
Need relationships between x and s, also between x and y
similar triangles.

$$
\begin{aligned}
& \frac{6^{\prime}}{s}=\frac{30^{\prime}}{y} \\
& 6^{\prime} y=30^{\prime} s \\
& y=\frac{301}{6^{\prime}} s=5 s
\end{aligned}
$$

Note that: $1+x=y$

$$
\begin{aligned}
A=s s & \Delta+x
\end{aligned}=5 s
$$

Example 6: At a distance of 50 ft from the pad, a man observes a helicopter taking off from a heliport. The helicopter is rising vertically at a speed of $44 \mathrm{ft} / \mathrm{second}$. How fast is the distance between the helicopter and the man changing when it is at an altitude of 120 ft ?

$$
\begin{aligned}
y^{2}+(50 f f)^{2} & =c^{2} \\
y^{2}+2500 f t^{2} & =c^{2} \\
\frac{d}{d t}\left(y^{2}+2500 f^{2}\right) & =\frac{d}{d t}\left(c^{2}\right) \\
2 y \frac{d y}{d t}+0 & =2 c \frac{d c}{d t} \\
\frac{2 y \frac{d y}{d t}}{2 c} & =\frac{d c}{d t} \\
\frac{d c}{d t} & =\frac{y}{c} \frac{d y}{d t}
\end{aligned}
$$

Know: $\frac{d y}{d t}=+44 \mathrm{ft} / \mathrm{sec}$
Want: $\frac{d c}{d t}$
When: $y=120 \mathrm{ft}$
\rightarrow Ned bo find c when $y=120^{\circ}$.

$$
\begin{aligned}
& \frac{d c}{d t}=\frac{y}{c} \cdot \frac{d y}{d t} \\
& =\frac{120^{\prime}}{130^{\circ}} \cdot 44 \mathrm{ft} / \mathrm{sec} \\
& \left(120^{\prime}\right)^{2}+\left(50^{\circ}\right)^{2}=c^{2} \\
& 14400+2500=c^{2} \\
& =\frac{528}{13} \approx 40.615 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Ex 2 contd:

$$
\begin{aligned}
V & =\frac{25 \pi}{432} \omega^{3} \\
\frac{d}{d t}(V) & =\frac{d}{d t}\left(\frac{25 \pi}{432} \omega^{3}\right) \\
\frac{d V}{d t} & =\frac{25 \pi}{432} \cdot 3 \omega^{2} \frac{d \omega}{d t} \\
& =\frac{75 \pi}{432} \omega^{2} \frac{d \omega}{d t}
\end{aligned}
$$

$$
w=8 f t, \frac{d V}{d t}=\frac{-10 t t^{3}}{m i n} \Rightarrow \frac{-0 f t^{3}}{m i n}=\frac{75 \pi}{432}(8 f t)^{2} \frac{d o}{d t}
$$

$$
\frac{-10 \mathrm{ft}^{3}}{\min }=\frac{4800 \pi \mathrm{ft}^{2}}{432} \cdot \frac{d w}{d t}
$$

$$
\begin{aligned}
& \frac{-10 \mathrm{ft}^{3}}{\min } \cdot \frac{432}{4800 \pi \mathrm{ft}^{2}} \\
& -\frac{4320}{4800 \pi} \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

$\approx-0.286 \mathrm{ft} / \mathrm{min}$
Ex 3 contld: $\quad \frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t}$

$$
\begin{aligned}
& x=9, y=\sqrt{5 t},\} \frac{d y}{d t}=-\frac{9 f 4}{\sqrt{544}} \cdot 2 \mathrm{ft} / \mathrm{s} \\
& \frac{d x}{d t}=2 \mathrm{ft} / \mathrm{s}=-\frac{18}{\sqrt{544}} \mathrm{ft} / \mathrm{s} \\
& \approx-0.7717 \mathrm{ft} / \mathrm{s} \\
& a^{2}+9^{2}=2 s^{2} \\
& a^{2}=544 \\
& \left.\begin{array}{rl}
x=2 A f t, y=7 \mathrm{ft}, \\
\frac{d x}{d t}=2 \mathrm{ff} / \mathrm{s}
\end{array}\right\} \Rightarrow \frac{d y}{d t}=\left\{-\frac{24}{7} \cdot 2 \mathrm{ft} / \mathrm{s} .\right. \\
& \left.\begin{array}{rl}
x=24 \mathrm{ft}, y=7 \mathrm{ft}, \\
\frac{d x}{d t}=2 \mathrm{ft} / \mathrm{s}
\end{array}\right\} \Rightarrow \frac{d y}{d t}=-\frac{24}{7} \cdot 2 \mathrm{ft} / \mathrm{s} . \\
& x=24 \\
& a=\sqrt{544} \\
& a^{2}+24^{2}=25^{2} \\
& a=\eta \mathrm{ft}
\end{aligned}
$$

Ex 3: Part (c): Find the rate of charge in the angle between the ladder and the wall when $x=99$. (Similar to 2.6 \# 21)

$$
\hat{\theta}_{\theta} \quad \underline{k n o w:} \frac{d x}{d t}=+2 f t / 5
$$

Want: $\frac{d \theta}{d t}$
When: $x=9^{\prime}$
Need a relationship (equation) between θ and x i

$$
\begin{aligned}
& \sin \theta=\frac{x}{25} \\
& \sin \theta=\frac{1}{25} x
\end{aligned}
$$

Implicit Diff: $\frac{d}{d t}(\sin \theta)=\frac{d}{d t}\left(\frac{1}{25} x\right)$

$$
\begin{aligned}
(\cos \theta) \frac{d \theta}{d t} & =\frac{1}{25} \cdot \frac{d x}{d t} \\
\frac{d \theta}{d t} & =\frac{1}{25} \cdot \frac{1}{\cos \theta} \frac{d x}{d t}
\end{aligned}
$$

Note:

Find θ when $x=9 \mathrm{~A}: \sqrt{34 A} A_{\theta}$
From triangle/Pythogoras, $\frac{7}{9}$

$$
\begin{aligned}
& \cos \theta=\frac{\sqrt{54 t}}{25} \\
& \begin{aligned}
\frac{d \theta}{d t} & =\frac{1}{25} \cdot \frac{1}{\sqrt{5+4} / 25} \frac{d x}{d t} \\
& =\frac{1}{\sqrt{5+4}+t} \frac{d x}{d t} \\
& =\frac{1}{\sqrt{5+5 t}} \cdot 2 \mathrm{ft} / \mathrm{s} \\
& =\frac{2}{\sqrt{544}} / \mathrm{sec}
\end{aligned} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta=\frac{9}{25} \\
& \theta=\sin ^{-1}\left(\frac{9}{25}\right)
\end{aligned}
$$

(for an acub) inverse sin function gives back angles in the interval

$$
\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

Note:
radian $\theta=\frac{\text { are length }}{\text { radius }}$ (unites)

Homework Questions
2.5 \#11 $\sin x+2 \cos 2 y=1$. Find $\frac{d y}{d x}$

$$
\begin{gathered}
\frac{d}{d x}(\sin x+2 \cos 2 y)=\frac{d}{d x}(1) \\
\cos x-[2 \sin (2 y)] \frac{d}{d x}(2 y)=0 \\
\cos x-[2 \sin (2 y)]\left(2 \frac{d y}{d x}\right)=0 \\
\cos x-4 \frac{d y}{d x} \sin (2 y)=0 \\
\cos x=4 \frac{d y}{d x} \sin (2 y) \\
\frac{\cos x}{4 \sin (2 y)}=\frac{d y}{d x}
\end{gathered}
$$

2.5 $\# 25$. $(x+y)^{3}=x^{3}+y^{3}$. Find $\frac{d y}{d x}$ at $(-1,1)$

$$
\begin{aligned}
& \frac{d}{d x}(x+y)^{3}=\frac{d}{d x}\left(x^{3}+y^{3}\right) \\
& 3(x+y)^{2} \frac{d}{d x}(x+y)=3 x^{2}+3 y^{2} \frac{d y}{d x} \\
& \frac{3(x+y)^{2}}{}\left(1+\frac{d y}{d x}\right)=3 x^{2}+3 y^{2} \frac{d y}{d x} \\
& 3(x+y)^{2}+3(x+y)^{2} \frac{d y}{d x}=3 x^{2}+3 y^{2} \frac{d y}{d v}
\end{aligned}
$$

Divide by 3: $(x+y)^{2}+(x+y)^{2} \frac{d y}{d x}=x^{2}+y^{2} \frac{d y}{d x}$

$$
\begin{gathered}
(x+y)^{2} \frac{d y}{d x}-y^{2} \frac{d y}{d x}=x^{2}-(x+y)^{2} \\
\frac{d y}{d x}\left((x+y)^{2}-y^{2}\right)=x^{2}-(x+y)^{2}
\end{gathered}
$$

$$
\begin{aligned}
\frac{d y}{d x}=\frac{x^{2}-(x+y)^{2}}{(x+y)^{2}-y^{2}} \quad \text { then put i, } \\
x=-1 \\
y=1
\end{aligned}
$$

$2.6 \# 17$ sand falling onto conical pile at $10 \mathrm{ft}^{3} / \mathrm{min}$. Diameter of cone approx. 3 times its altitude.
At what rate is height charging when pile is IS high?

Know: $\frac{d y}{d t}=+10 \mathrm{ft}^{3} / \mathrm{min}$
Want: $\frac{d h}{d t}$
when: $h=15$

Note: $D=3 h$
Need relationship between V and h :

$$
2 r=3 h
$$

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h\left(N_{\text {led to ged rid of } r}\right) \quad r=\frac{3 h}{2} \\
& r=\frac{3 h}{2} \Rightarrow V=\frac{1}{3} \pi\left(\frac{3 h}{2}\right)^{2} h \\
& V=\frac{1}{3} \pi\left(\frac{3 h^{2}}{4}\right) h \\
& V=\frac{3 \pi}{4} h^{3} \quad \text { Then differentiate w/respect } \\
& \text { to } t
\end{aligned}
$$

$2.6 \# 196$

Water pumped in at $\frac{1}{4} \mathrm{~m}^{3} / \mathrm{min}$. I m of water at dep end.
(a) what \% of pool is filled?
(b) at what rate is water level rising?

Know: $\frac{d V}{d t}=\frac{1}{4} \mathrm{~m}^{3} / \mathrm{min}$
Want: $\frac{d h}{d t}$
when: $h=1 \mathrm{~m}$
Need Relationship between V and h :
(Area of triangular cross-section) $(6 \mathrm{~m})=V$ of water

$$
\begin{array}{rlrl}
& \frac{h}{x}=\frac{2}{12} \text { or } & \frac{h}{2}=\frac{x}{12} \\
\text { Area } D=\frac{1}{2}(\text { base })(h) & & \frac{12 h}{2}=x \\
& =\frac{1}{2}(x)(h) & & 6 h=x \\
& =\frac{1}{2}(6 h)(h) & \\
& =3 h^{2} &
\end{array}
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { Area f } \\
\text { water pat } \\
\text { of } \begin{array}{l}
\text { crus zed }
\end{array} \\
V=\frac{1}{2}(6 h)(h) \\
V=3 h^{2}(6 \mathrm{~m})
\end{array}=3 h^{2}
\end{aligned}
$$

