3.1: Extrema on an Interval

$$
=\text { Extreme Values) }
$$

Absolute maximum and minimum:
If $f(x) \leq f(c)$ for every x in the domain of f, then $f(c)$ is the maximum, or absolute maximum, of f.

If $f(x) \geq f(c)$ for every x in the domain of f, then $f(c)$ is the minimum, or absolute minimum of f.
The maximum and minimum values of a function are called the extreme values of the function.

In other words,

- The absolute maximum is the largest y-value on the graph.
- The absolute minimum is the smallest y-value on the graph.

Example 1:

min $=$ max $=-2$
Relative (Local) Maxima and Minima:

- A function f has a relative maximum, or local maximum, at $x=c$ if there is an interval (a, b) around c such that $f(x) \leq f(c)$ for every x in (a, b). (These are the "hilltops").
- A function f has a relative minimum, or local minimum, at $x=c$ if there is an interval (a, b) around c such that $f(x) \geq f(c)$ for every x in (a, b). (These are the "bottoms of valleys").

Relative max: $f(0.5)=-1$

$$
\begin{aligned}
\text { Relative minima: } & f(-1) \approx-2 \\
& f(1.5) \approx-3
\end{aligned}
$$

3.1.2

Notice: If the function is differentiable (smooth), then the tangent line at a local minimum or maximum is horizontal.
(relative)
Fermat's Theorem: If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$ 。

This means that if f is differentiable at c and has a relative extreme at c, then the tangent line to f at c must be horizontal.

However, we must be careful. The fact that $f^{\prime}(c)=0$ (tangent line is horizontal) does not guarantee that there is a relative minimum or maximum at c.

Example 2: $f(x)=x^{3}$

$$
f^{\prime}(x)=3 x^{2}
$$

Where is the derivative 0 ? at $x=0$.

$$
\begin{gathered}
f^{\prime}(0)=3(0)^{2}=0 \\
\frac{x}{1} x^{3} \\
-15-1 \\
2 x^{8}-0 \\
-2
\end{gathered}
$$

Example 3: There can be a local maximum or minimum at c even if $f^{\prime}(c)$ does not exist.

$$
f(x)=|x|
$$

Relative minimum: $f(0)=0$

$$
f \text { is not differentiableat } 0 \text {. }
$$

Ex:

$$
\begin{aligned}
& f(x)=\tan x \\
& f^{\prime}(x)=\sec ^{2} x \\
& f^{\prime}(0)=(\sec (0))^{2} \\
& =\left(\frac{1}{\cos 0}\right)^{2} \\
& =\left(\frac{1}{1}\right)^{2} \\
& =1=\text { slope }
\end{aligned}
$$

Note: $f^{\prime}\left(\frac{\pi}{4}\right)=\left(\sec \frac{\pi}{4}\right)^{2}$

$$
\begin{array}{ll}
\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} & =\left(\frac{1}{\cos \frac{\pi}{4}}\right)^{2} \\
\sec \frac{\pi}{4}=\sqrt{2} & =(\sqrt{2})^{2} \\
& =2
\end{array}
$$

$$
f\left(\frac{\pi}{4}\right)=\tan \frac{\pi}{4}=1
$$

Critical Number: A critical number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Theorem: If f has a local maximum or minimum at c, then c is a critical number of f.
Note: The converse of this theorem is not true. It is possible for f to have a critical number at c, but not to have a local maximum or minimum at c.

Example 4: Find the critical numbers of $f(x)=x^{3}+\frac{17}{2} x^{2}-6 x+4$.
Find derivative: $f^{\prime}(x)=3 x^{2}+\frac{17}{2}(2 x)-6$

$$
=3 x^{2}+17 x-6
$$

Set $f^{\prime}(x)=0$:

$$
\left\{\begin{array}{l|l}
3 x-1=0 & x+60 \\
3 x=1 & x=-6 \\
x=\frac{1}{3} & \\
\begin{array}{l}
\text { Critical } \\
\text { Numbers: }
\end{array} & \frac{1}{3},-6
\end{array}\right.
$$

Example 5: Find the critical numbers of $f(x)=x^{2 / 3}$
Numb

Tical
Numb
$\frac{N d:}{f(x)}=x^{2 / 3}=\sqrt[3]{x^{2}}$
Critical

$$
\begin{aligned}
& f(x)=x^{2 / 3} \\
& f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}=\frac{2}{3 \sqrt[3]{x}}
\end{aligned}
$$

Domain: $(-\infty, \infty)$ The denominates is 0 when $x=0$.
so $f^{\prime}(0)$ is ${ }_{x^{2}}$ ot defined (does not exist)
Example 6: Find the critical numbers of $f(x)=\frac{x^{2}}{x-3}$
Domain of f :

$$
\begin{gathered}
x \neq 3 \\
(-\infty, 3) \cup(3, \infty)
\end{gathered}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x-3) \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}(x-3)}{(x-3)^{2}} \\
& =\frac{(x-3)(2 x)-x^{2}(1)}{(x-3)^{2}}=\frac{2 x^{2}-6 x-x^{2}}{(x-3)^{2}} \\
& =\frac{x^{2}-6 x}{(x-3)^{2}}=\frac{x(x-6)}{(x-3)^{2}}
\end{aligned}
$$

Set $f^{\prime}(x)=0: \frac{x(x-6)}{(x-3)^{2}}=0$. Numerator is 0 for $x=0, x=6$
Denominator is 0 for $x=3$
So $f^{\prime}(0)=0, f^{\prime}(6)=0, f^{\prime}(3)$ doesn't exist. But 3 is not in the contd next page
domain of f, so it can't be a
critical number.
Critical numbers: 0,6
Absolute extrema on a closed interval:
Extreme Value Theorem: If f is continuous on a closed interval $[a, b]$, then f has both an absolute maximum and an absolute minimum on $[a, b]$.

Note: The absolute maximum and the absolute minimum must occur at either a critical value in (a, b) or at an endpoint (at a or b).

Example 7:
Absolute min ≈ 1
occurs at a critical number * bosolute max: *losolute $\approx 5.5-6$ Loccurs at end at an
int)

Example 8: If either hypothesis of the extreme value theorem (continuity or closed interval) is violated, the existence of an absolute maximum or minimum is not guaranteed.

Step 0: Check that f is continuous.
Process for Finding the Absolute Extrema of a Continuous Function on a Closed Interval:

1. Find the critical values in (a, b).
2. Compute the value of f at each critical value in (a, b) and also compute $f(a)$ and $f(b)$.
3. The absolute maximum is the largest of these y-values and the absolute minimum is the smallest of these y-values.

Example 9: Find the absolute extrema for $f(x)=x^{2}+2$ on the interval $[-2,3]$.
Step 0: is f continuous? Yes.
step (: Find critical numbers: $f^{\prime}(x)=2 x=0$
$x=0 \quad$ Critical number: 0
Step 2: Find y-values at critical $\# s$ and endpts

$$
\begin{aligned}
& f(0)=0^{2}+2=2 \\
& f(-2)=(-2)^{2}+2=4+2=6 \\
& f(3)=(3)^{2}+2=9+2=11
\end{aligned}
$$

Absolute max: $f(3)=11$
Absolute min: $f(0)=2$

Example 10: Find the extreme values of $g(x)=\frac{1}{2} x^{4}-\frac{2}{3} x^{3}-2 x^{2}+3$ on the interval $[-2,1]$.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{2}\left(4 x^{3}\right)-\frac{2}{3}\left(3 x^{2}\right)-4 x \\
& =2 x^{3}-2 x^{2}-4 x \\
& =2 x\left(x^{2}-x-2\right) \\
& =2 x(x-2)(x+1) \\
g^{\prime}(x) & =0: x=0,2,-1 \\
2 & \text { is not in interval }
\end{aligned}
$$

Shorthand: 2 of $[-2,1]$

$$
\begin{aligned}
g(0) & =3 \\
g(-1) & =\frac{1}{2}(-1)^{4}-\frac{2}{3}(-1)^{3}-2(-1)^{2}+3 \\
& =\frac{1}{2}+\frac{2}{3}-2+3 \\
& =\frac{3}{6}+\frac{4}{6}+\frac{6}{6}=\frac{13}{6}=2 \frac{1}{6} \\
g(-2) & =\frac{1}{2}(-2)^{4}-\frac{2}{3}(-2)^{3}-2(-2)^{2}+3 \\
& =\frac{1}{2}(16)-\frac{2}{3}(-8)-8+3 \\
& =8+\frac{16}{3}-8+3=\frac{16}{3}+\frac{1}{3}=\frac{25}{3} \\
g(1) & =\frac{1}{2}(1)^{4}-\frac{2}{3}(1)^{3}-2(1)^{2}+3 \\
& =\frac{3}{6}-\frac{4}{6}-2+3 \\
& =-\frac{1}{6}+1=\frac{5}{6}+\text { smallest }
\end{aligned}
$$

Absolute max: $g(-2)=\frac{25}{3}$
Absolute min: $g(1)=\frac{5}{6}$

Example 11: Find the absolute extrema of $h(x)=6 x^{2 / 3}$ on the intervals (a) $[-8,1]$, (b) $[-8,1$), and. (c) $(-8,1)$.

$$
h(x)=6 x^{2 / 3}=6 \sqrt[3]{x^{2}}
$$

h is continuous on ($-\infty, \infty$)
Find critical \#s: $h^{\prime}(x)=6\left(\frac{2}{3} x^{-1 / 3}\right)=4 x^{-1 / 3}=\frac{4}{\sqrt[3]{x}}$
Derivative does not exist ot $x=0$ (where denominator)
Nurneratar is never 0 .
Only critical number is 0 . Note that $0 \in[-8,1]$
Findy-values:

$$
\begin{aligned}
& h(0)=6 \sqrt[3]{0^{2}}=6 \cdot 0=0 \\
& h(-8)=6 \sqrt[3]{(-8)^{2}}=6 \cdot \sqrt[3]{60}=6(4)=24 \\
& h(1)=6 \sqrt[3]{(1)^{2}}=6(1)=6
\end{aligned}
$$

(a) Absolute min is $h(0)=0$; absolute max is $h(-8)=24$.

Example 12: Find the absolute maximum and absolute minimum of $f(x)=\sin 2 x-x$ on the interval $[0, \pi]$.

$$
\begin{aligned}
f^{\prime}(x) & =(\cos 2 x)(2)-1 \\
& =2 \cos 2 x-1
\end{aligned}
$$

Set $f^{\prime}(x)=0: \quad 0=2 \cos 2 x-1$
$1=2 \cos 2 x$
(It might help

$$
\frac{1}{2}=\cos 2 x
$$

$$
\cos 2 x=\frac{1}{2}
$$

on $[0,2 \pi], 2 x=\frac{\pi}{3}, \frac{5 \pi}{3}+2 k \pi$ to let $\theta=2 x$ then $\cos \theta=\frac{1}{2}$)

$$
\theta=\frac{\pi}{3}, \frac{5 \pi}{3}
$$

Divide by $2: \quad x=\frac{\pi}{6}+\frac{2 k \pi}{2}, \frac{5 \pi}{6}+\frac{2 k \pi}{2}$

$$
x=\frac{\pi}{6}+k \pi, \frac{5 \pi}{6}+k \pi
$$

Only critical numbers in interval ard $\frac{\pi}{6}, \frac{5 \pi}{6}$.

$$
\begin{aligned}
& f(\pi)=\sin (2(0))-0=0 \\
& f(\pi)=\sin (2 \pi)-\pi=0-\pi=-\pi \approx-3.14 \\
& f\left(\frac{\pi}{6}\right)=\sin \left(\frac{2 \pi}{6}\right)-\frac{\pi}{6}=\frac{\sqrt{3}}{2}-\frac{\pi}{6} \approx 0.343 \\
& f\left(\frac{5 \pi}{6}\right)=\sin \left(2 \cdot \frac{5 \pi}{6}\right)-\frac{5 \pi}{6}=\sin \left(\frac{5 \pi}{3}\right)-\frac{5 \pi}{6} \\
& \\
& =-\frac{\sqrt{3}}{2}-\frac{5 \pi}{6} \approx-3.48
\end{aligned}
$$

Absolute max: $f\left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$
Absolute $\min : f\left(\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2}-\frac{5 \pi}{6}$

Ex 11 contd:
(b) $[-8,1)$

Extreme value Theorem does not apply.

$$
\begin{aligned}
& h(x)=6 \sqrt[3]{x^{2}} \\
& h^{\prime}(x)=\frac{4}{\sqrt[3]{x}}
\end{aligned}
$$

For $x>0, h^{\prime}(x)>0$. So tangent lines have positive
For $x<0, h^{\prime}(x)<0$, So tangent lines hay p negative slopes.

(2) On $[-8,1)$

Absolute min: $h(0)=0$
Absolute max: $h(-8)=24$
(C) on $(-8,1)$

Absolute min: $h(0)=0$
No absolute max.

