3.3: Increasing and Decreasing Functions and the First Derivative Test

Increasing and decreasing functions:

A function f is said to be increasing on the interval (a, b) if, for any two numbers x_{1} and x_{2} in (a, b), $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$. A function f is increasing at c if there is an interval around c on which f is increasing.

A function f is said to be decreasing on the interval (a, b) if, for any two numbers x_{1} and x_{2} in (a, b), $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$. A function f is decreasing at c if there is an interval around c on which f

Notice that wherever a function is increasing, the tangent lines have positive slope.
Notice that wherever a function is decreasing, the tangent lines have negative slope.
This means that we can use the derivative to determine the intervals where a function is increasing and decreasing.

Increasing/Decreasing Test: Let f be a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

- If $f^{\prime}(x)>0$ for every x in (a, b), then f is increasing on (a, b).
- If $f^{\prime}(x)<0$ for every x in (a, b), then f is decreasing on (a, b).
- If $f^{\prime}(x)=0$ for every x in (a, b), then f is constant on (a, b).

Example 1: $f(x)=x^{2}$

$$
\begin{aligned}
f^{\prime}(x) & =2 x \\
\text { set } f^{\prime}(x)=0: \quad 2 x & =0 \\
x & =0 \\
f^{\prime}(0) & =0
\end{aligned}
$$

$$
\begin{array}{r}
\text { Notice: for } x>0, f^{\prime}(x)=2 x>0 \\
\text { for } x<0, f^{\prime}(x)=2 x<0
\end{array}
$$

$$
\text { increasing on }(0, \infty)
$$

$$
\text { decreasing on }(-\infty, 0)
$$

Steps for Determining Increasing/Decreasing Intervals

1. Find all the values of x where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ is not defined. Use these values to split the number line into intervals.
2. Choose a test number c in each interval and determine the sign of $f^{\prime}(c)$.

- If $f^{\prime}(c)>0$, then f is increasing on that interval.
- If $f^{\prime}(c)<0$, then f is decreasing on that interval.

Note: Three types of numbers can appear on your number line:

1) Numbers where the function is defined and the derivative is 0 . (These are critical numbers.)
2) Numbers where the function is defined and the derivative is undefined. (These are also critical numbers.)
3) Numbers where the function is undefined. (These are NOT critical numbers.)

First derivative test:

This procedure determines the relative extrema of a function f.

First derivative test:

Suppose that c is a critical number of a function f that is continuous on an open interval containing c.

- If $f^{\prime}(x)$ changes from positive to negative across c, then f has a relative maximum at c.
- If $f^{\prime}(x)$ changes from negative to positive across c, then f has a relative minimum at c.
- If $f^{\prime}(x)$ does not change sign across c , then f does not have a relative extreme at c.

Example 2: Determine the intervals on which $f(x)=x^{3}+6 x^{2}-36 x+18$ is increasing and decreasing.

Find the relative extrema.

$$
\begin{aligned}
f(x) & =x^{3}+6 x^{2}-36 x+18 \\
f^{\prime}(x) & =3 x^{2}+12 x-36 \\
& =3\left(x^{2}+4 x-12\right) \\
f^{\prime}(x) & =3(x-2)(x+6) \\
f^{\prime}(x) & =0 \text { for } x=2,-6
\end{aligned}
$$

$(-6,2)$: Test number $x=0$

$$
\begin{aligned}
f^{\prime}(0) & =3(0-2)(0+6) \\
& =(+)(-)(t) \\
& \Rightarrow(-)
\end{aligned}
$$

$(2, \infty):$ Fest number $x=3$:
$f^{\prime}(3)=3(3-2)(3+6) \Longrightarrow(t)(t)(t)$
increasing on $(-\infty,-6)$ and $(2,-\infty)$
Decreasing on $(-6,2)$

Relative min: $f(2)=-22$
$(-\infty,-6)$: Test number $x=-7$
$f^{\prime}(-7)=3(-7)^{2}+12(-7)-36$ or use factored form:

$$
\begin{aligned}
& =3(49)-84-36 \\
& =147-84-36 \\
& =14 \underline{1}-2720
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(-7) & =3(-7-2)(-7+6) \\
& =3(-9)(-1) \Rightarrow(+)(-)(-) \\
& =27
\end{aligned}
$$

Example 3: Determine the intervals on which $g(x)=x^{3}-6 x^{2}+12 x-8$ is increasing and decreasing.
Find the relative extrema.

$$
\begin{aligned}
g(x) & =x^{3}-6 x^{2}+12 x-8 \\
g^{\prime}(x) & =3 x^{2}-12 x+12 \\
& =3\left(x^{2}-4 x+4\right) \\
& =3(x-2)(x-2)=3(x-2)^{2}
\end{aligned}
$$

set $g^{\prime}(x)=0: x=2$ critical number

$(-\infty, 2): x=1$ Test number

$$
\begin{aligned}
g^{\prime}(1) & =3(1-2)(1-2) \\
& \Rightarrow(+)(-)(-) \\
& \Rightarrow(-)
\end{aligned}
$$

$(2, \infty)$: Test $x=3$
g is increasing on $(-\infty, \infty)$.

$$
\begin{aligned}
g^{\prime}(3) & =3(3-2)(3-2) \\
& =(+1)(+)(+)
\end{aligned}
$$

Example 4: Determine the intervals on which $g(x)=x^{2 / 5}$ is increasing and decreasing. Find the relative

$$
\begin{aligned}
& g(x)=x^{2 / 5}=\sqrt[5]{x^{2}} \quad \text { Domain: }(-\infty, \infty) \\
& g^{\prime}(x)=\frac{2}{5} x^{-3 / 5}=\frac{2}{5 \sqrt[5]{x^{3}}}
\end{aligned}
$$

$g^{\prime}(x)$ is undefined at $\left.x=0.\right\} \Rightarrow$ Critical Number: 0 $g^{\prime}(x)$ is never 0 .

$(-\infty, 0)$: Test $x=-1:$

$$
\begin{aligned}
& g^{\prime}(-1)=\frac{2}{5 \sqrt[5]{(-1)^{3}}} \Rightarrow \frac{2}{(5)(-)} \\
& \Rightarrow(-1 \\
& (0, \infty): \text { Test } x=1: \\
& g^{\prime}(1)=\frac{2}{5 \sqrt[5]{(1,3)}} \Rightarrow(+)
\end{aligned}
$$

Decreasing on $(-\infty, 0)$.
Increasing on $(0, \infty)$.
Relative minimum $g(0)=0$.
Example 5: Determine the intervals on which $f(x)=x+\frac{4}{x}$ is increasing and decreasing. Find the relative extrema. f is undefined at $x=0$. Domain:

$$
\begin{array}{ll}
f(x)=x+4 x^{-1} & \text { where is } f^{\prime}(x)=0 \text { ? } x=2, x=-2 \\
f^{\prime}(x)=1-4 x^{-2} & \text { where is } f^{\prime} \text { undefined? }
\end{array}
$$

$$
=1-\frac{4}{x^{2}}
$$

Where is f'undifined? $x=0$

$$
=\frac{x^{2}}{x^{2}}-\frac{4}{x^{2}}
$$

$$
=\frac{x^{2}-4}{x^{2}}
$$

$$
=\frac{(x+2)(x-2)}{x^{2}}
$$

$$
\begin{aligned}
(-2,0): \text { Test } x & =-1: g^{\prime}(-1) \Rightarrow \frac{(-1+2)(-1-2)}{(-1)^{2}} \\
& (+)(-)
\end{aligned}
$$

Increasing on $(-\infty,-2)$ and $(2, \infty)$.

$$
\Rightarrow \frac{(+)(-)}{(+)} \Rightarrow(-)
$$

Decreasing on $(-2,0)$ and $(0,2)$.
$(0,2):$ Test $x=1 \Rightarrow g^{\prime}(1)=\frac{(1+2)(1-2)}{(1)^{2}}$

$$
\Rightarrow \frac{(t)(-)}{c+1} \Rightarrow(-)
$$

Relative max $f(-2)=-4$
$(2, \infty)$: Test $x=3 \Rightarrow g^{\prime}(3)=(3+2)(3-2)$

$$
\Rightarrow \frac{(+)(t)}{(+1} \Rightarrow(t) \frac{3^{2}}{3^{2}}
$$

Example 6: Find the local extremes of $g(x)=\left(x^{2}-4\right)^{2 / 3}$. Where is it increasing and decreasing?

$$
\begin{aligned}
g^{\prime}(x) & =\frac{2}{3}\left(x^{2}-4\right)^{-1 / 3}(2 x) \\
& =\frac{4 x}{3 \sqrt[3]{x^{2}-4}}
\end{aligned}
$$

where is $g^{\prime}(x)=0$? At $x=0$.
Where is $g^{\prime}(x)$ undefined? At $x= \pm 2$
Critical numbers: $0,2,-2$
$(-\infty,-2)$: Test $x=-3$

$$
\begin{aligned}
& g^{\prime}(-3)=\frac{4(-3)}{3 \sqrt[3]{(-3)^{2}-4}} \\
& \Rightarrow \frac{(-1}{(+)} \Rightarrow(-)
\end{aligned}
$$

Example 7: Find the relative extremes of $f(x)=\frac{1}{2} x-\sin x$ on the interval $(0,2 \pi)$. Where is it
increasing and decreasing on that interval?

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2}-\cos x \\
& \operatorname{set} f^{\prime}(x)=0: \quad \frac{1}{2}-\cos x=0 \\
& \frac{1}{2}=\cos x \\
& x=\frac{\pi}{3}, \frac{5 \pi}{3} \text { critical } \\
& \text { numbers }
\end{aligned}
$$

$\left(0, \frac{\pi}{3}\right):$ Test $x=\frac{\pi}{6}$

$$
\begin{aligned}
& f^{\prime}\left(\frac{\pi}{6}\right)=\frac{1}{2}-\cos \frac{\pi}{6}=\frac{1}{2}-\frac{\sqrt{3}}{2} \Rightarrow(-) \\
& \left(\frac{\pi}{3}, \frac{5 \pi}{3}\right) \text { : Test } x=\frac{\pi}{2} \\
& f^{\prime}\left(\frac{\pi}{2}\right)=\frac{1}{2}-\cos \frac{\pi}{2}=\frac{1}{2}-0=\frac{1}{2}(t) \\
& \left(\frac{5 \pi}{3}, 2 \pi\right): \text { Test } x=\frac{11 \pi}{6} \\
& f^{\prime}\left(\frac{11 \pi}{6}\right)=\frac{1}{2}-\cos \left(\frac{11 \pi}{6}\right)=\frac{1}{2}-\frac{\sqrt{3}}{2} \Rightarrow(-) \\
& \text { lnareasing on }\left(\frac{\pi}{3}, \frac{5 \pi}{3}\right) \text {. } \\
& \text { Decreasing on } \\
& \left(0, \frac{\pi}{3}\right) \text { and }\left(\frac{5 \pi}{3}, 2 \pi\right) \text {. }
\end{aligned}
$$

Decreasing on $(-\infty,-2)$ and $(0,2)$. increasity on $(-2,0)$ and $(2, \infty)$. Relative max: $g(0)=\sqrt[3]{16}$ Relative min: $g(-2)=0$ $g(2)=0$

