4.1: Antiderivatives and Indefinite Integration

Definition: An antiderivative of f is a function whose derivative is f.
ie. A function F is an antiderivative of f if $F^{\prime}(x)=f(x)$.
Example 1: $\quad F(x)=x^{3}+5 x$ is an antiderivative of $f(x)=3 x^{2}+5$.
Check: $F^{\prime}(x)=3 x^{2}+5$

What are some more antiderivatives of $f(x)=3 x^{2}+5$?

$$
\begin{aligned}
& G(x)=x^{3}+5 x+12 \\
& H(x)=x^{3}+5 x-\frac{17 \pi}{2}
\end{aligned}
$$

All antiderinatives take the form

So we have a whole "family" of antiderivatives of f. where C is

Definition: A function F is called an antiderivative of f on an interval I if $\overline{F^{\prime}(x)=f}(x)$ for all x in I.

Theorem: If F is an antiderivative of f on an interval I, then all antiderivatives of f on I will be of the form

$$
F(x)+C
$$

where C is an arbitrary constant.

Example 2: Find the general form of the antiderivatives of $f(x)=3 x^{2}+5$.

$$
F(x)=x^{3}+5 x+C
$$

Example 3: Find the general form of the antiderivatives of $f(x)=6 x^{5}+\cos x$.

$$
\begin{aligned}
& F(x)=x^{6}+\sin x+C \\
& F^{\prime}(x)=6 x^{5}+\cos x \operatorname{cok}
\end{aligned}
$$

Integration:
Integration is the process of finding antiderivatives.
$\int f(x) d x$
$\int f(x) d x$ is called the indefinite integral of f.
$\int f(x) d x$ is the family of antiderivatives, or the most general antiderivative of f.

This means: $\int f(x) d x=F(x)+c$, where $F^{\prime}(x)=f(x)$.
The c is called the constant of integration.

Example 4: Find $\int\left(3 x^{2}+5\right) d x$.

$$
\int\left(3 x^{2}+5\right) d x=x^{3}+5 x+c
$$

Example 5: Find $\int 6 x^{5}+\cos x d x$.

$$
\int\left(6 x^{5}+\cos x\right) d x=x^{6}+\sin x+c
$$

Example 6: Find $\int \sec ^{2} d x$.

$$
\begin{aligned}
& \int \sec ^{2} x d x=\sqrt{\tan x+c} \\
& \text { Check: } \frac{d}{d x}(\tan x+c)=\sec ^{2} x
\end{aligned}
$$

Rules for Finding Antiderivatives:
Notation in this table: F is an antiderivative of f, G is an antiderivative of g,

1. $\int k d x=k x+c \quad(k$ a constant $)$

$$
\begin{gathered}
\text { Tower } \\
\text { Rule }
\end{gathered} \rightarrow \text { 2. } \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad(n \neq-1) \longrightarrow \frac{E x}{\int x^{4}} d x=\frac{x^{5}}{5}+C
$$

3. $\int k f(x) d x=k \int f(x) d x \quad(k$ a constant $)$
4. $\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x$
5. $\int \cos x d x=\sin x+c$
6. $\int \sin x d x=-\cos x+c$

Check:

$$
\frac{d}{d x}\left(\frac{x^{5}}{5}\right)=\frac{d}{d x}\left(\frac{1}{5} x^{5}\right)
$$

$$
=\frac{1}{5}\left(5 x^{4}\right)=x^{4} V_{O K}
$$

7. $\int \sec ^{2} x d x=\tan x+c$
8. $\int \sec x \tan x d x=\sec x+c$

Example 7: Find the general antiderivative of $f(x)=\frac{1}{2}$.

$$
F(x)=\frac{1}{2} x+c
$$

$$
\text { Cheri: } \frac{d}{d x}\left(\frac{1}{2} x\right)=\frac{1}{2}
$$

$$
\begin{aligned}
\frac{d}{d x}(\cos x) & =-\sin x \\
\Leftrightarrow & \Rightarrow \int \operatorname{din} x d x=-\cos x+c \\
\frac{d}{d x}(\sin x) & =\sin x \Rightarrow \int \cos x d x=\sin x+c \\
\frac{d}{d x}(\cot x) & =-\operatorname{coc} x \\
& \Rightarrow \frac{d}{d x}(-\cot x)=\csc ^{2} x \Rightarrow \int \csc ^{2} x d x=-\cot x+c \\
\frac{d}{d x}(\csc x) & =-\csc x \cot x \Rightarrow \int \csc x \cot x d x=-\csc x+c
\end{aligned}
$$

Example 8: Find $\int x^{3} d x$.

$$
\int x^{3} d x=\frac{x^{3+1}}{3+1}+c=\frac{x^{4}}{4}+c
$$

Example 9: Find $\int 7 x^{2} d x$.

$$
\int 7 x^{2} d x=7 \int x^{2} d x=7 \cdot \frac{x^{3}}{3}+c=\frac{7}{3} x^{3}+c
$$

$$
\text { Check: } \frac{d}{d x}\left(\frac{7}{3} x^{3}\right)=\frac{7}{3}\left(3 x^{2}\right)^{3}=7 x^{2} \text { ok }
$$

$$
\int \frac{1}{x^{5}} d x=\int_{1} x^{-5} d x=\frac{x^{-5+1}}{-5+1}+c=\frac{x^{-4}}{-4}+c=-\frac{1}{4 x^{4}}+c
$$

Check: $\frac{d}{d x}\left(-\frac{1}{4} x^{-4}\right)=-\frac{1}{4}\left(-4 x^{-5}\right)=x^{-5}$ ok
Example 11: Find the general antiderivative of $f(x)=\frac{5}{x^{2}}$.
$\left.E x 10.5 \int x^{12} d x=\frac{x^{13}}{13}+c \right\rvert\, \quad f(x)=5 x^{-2}$

Example 13: Find $\int 3 \sqrt{x} d x$.

$$
\begin{aligned}
3 \int x^{1 / 2} d x & =3 \cdot \frac{x^{3 / 2}}{3 / 2}+c \\
& =3 \cdot \frac{2}{3} x^{3 / 2}+c \\
& =2 x^{3 / 2}+c
\end{aligned}
$$

Crack: $\frac{d}{d x}\left(2 x^{3 / 2}\right)$

$$
c=c_{1}+c_{2}+c_{3}
$$

Check: $\frac{d}{a x}\left(2 x^{3}-\frac{3}{2} \cdot x^{2}+9 x\right)$

$$
=6 x^{2}-\frac{3}{x} \cdot 2 x+9 \sqrt{0 k}
$$

$$
=2 \cdot \frac{3}{2} x^{1 / 2}=3 x^{1 / 2} a
$$

$$
\begin{aligned}
& \text { Check } \frac{d}{d x}\left(-5 x^{-1}\right)=5 x^{-2} \quad F(x)=\int 5 x^{-2} d x=5 \frac{x^{-2+1}}{-2+1}+C \\
& =\frac{s}{x^{2}} \text { ok } \\
& \text { Example 12: } \int\left(6 x^{2}-3 x+9\right) d x \\
& \int 6 x^{2} d x-\int 3 x d x+\int 9 d x \\
& \text { antiderivation is } F(x)=-\frac{5}{x}+c \\
& =6 \int x^{2} d x-3 \int x d x+9 \int d x \\
& =6 \cdot \frac{x^{3}}{3}+c_{1}-3 \cdot \frac{x^{2}}{2}+c_{2}+9 x+c_{3}=2 x^{3}-\frac{3 x^{2}}{2}+9 x+C
\end{aligned}
$$

$$
\int \sin x d x=-\cos x+c
$$

$$
\int \cos x d x=\sin x+c
$$

Example 14: Find $\int(3 \cos x+5 \sin x) d x$.

$$
3 \int \cos x d x+5 \int \sin x d x=3 \sin x+5(-\cos x)+c
$$

Check, $\frac{d}{d x}(3 \sin x-5 \cos x)$

$$
=3 \sin x-5 \cos x+c
$$

$$
=3 \cos x-5(-\sin x)=3 \cos x
$$

$$
+5 \sin x .
$$

Example 15: Find $\int \frac{x^{7}-\sqrt[3]{x}+3 x^{2}}{x^{5}} d x$.

$$
\begin{aligned}
& \quad \begin{aligned}
& \text { Example 15: Find } \int \frac{x^{1}-\sqrt[3]{x+3 x^{2}}}{x^{5}} d x . \\
&\left.x^{7}-\frac{x^{1 / 3}}{x^{5}}+\frac{3 x^{2}}{x^{5}}\right) d x=\int\left(x^{2}-x^{-14 / 3}+3 x^{-3}\right) d x \\
&=\frac{x^{3}}{3}-\frac{x^{-\frac{10}{3}+\frac{3}{3}}}{-1 / 3}+\frac{3 x^{-2}}{-2}+c \\
& \text { Example 16: Find the general antiderivative of } f(\theta)=\frac{\sin \theta}{3}=\frac{x^{3}}{3}+\frac{3}{11} x^{-1 / 3}-\frac{3}{2} x^{-2}
\end{aligned}+c
\end{aligned}
$$

$F(\theta)=\int \frac{1}{3} \sin \theta d \theta$

$$
\begin{array}{r}
=\frac{1}{3}(-\cos \theta)+c=-\frac{1}{3} \cos \theta+c \\
F(\theta)=-\frac{1}{3} \cos \theta+c
\end{array}
$$

Example 17: $\int\left(\sqrt[3]{x}+\frac{2}{\sqrt{x}}\right) d x$

$$
\begin{aligned}
& \text { Example 17: } \int\left(x^{1 / 3}+2 x^{-1 / 2}\right) d x=\frac{\left.x^{\frac{2}{x}+\frac{2}{\sqrt{x}}}\right) d x}{\frac{1}{3}+1}+\frac{2 x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+c=\frac{x^{4 / 3}}{4 / 3}+\frac{2 x^{1 / 2}}{1 / 2}+c \\
& =\frac{3}{4} x^{4 / 3}+\frac{2}{1}\left(2 x^{1 / 2}\right)=\frac{3}{4} x^{4 / 3}+4 x^{\frac{1}{2}}+c
\end{aligned}
$$

Check: $\frac{d}{d x}\left(\frac{3}{4} x^{4 / 3}+4 x^{1 / 2}\right)=\frac{3}{4} \cdot \frac{4}{3} x^{1 / 3}+4\left(\frac{1}{2} x^{-1 / 2}\right.$
Example 18: $\int\left(6 y^{2}-2\right)(8 y+5) d y$

$$
=x^{1 / 3}+2 x^{-y_{2}} \Delta x
$$

$$
\begin{aligned}
& \int\left(48 y^{3}+30 y^{2}-16 y-10\right) d y \\
= & \frac{40 y^{4}}{4}+30 \frac{10}{3}-16 \cdot \frac{y^{3}}{4}-10 y+C \\
= & \frac{1}{4} 2 y^{4}+10 y^{3}-8 y^{2}-10 y+c
\end{aligned}
$$

Note: $y=f(x) \quad f(x)=\int f^{\prime}(x) d x$

Differential equations:

$$
\left.\frac{d y}{d x}=f^{\prime}(x)\right\}
$$

A differential equation is an equation involving the derivative of a function. To solve a

$$
y=f(x)=\int \frac{d y}{d x} d x
$$ differential equation means to find the original function.

An initial value problem is a common type of differential equation in which a derivative and an initial condition are given. $=\int 1 d y$ $=1 y+c$
Example 19: Given $f^{\prime}(x)=x^{2}-7$, find f. This is an example of a differential equation.
we want to find the antiderivative.

$$
\begin{aligned}
& f(x)=\int f^{\prime}(x) d x \\
&=\int\left(x^{2}-7\right) d x=\frac{x^{3}}{3}-7 x+c \\
& f(x)=\frac{x^{3}}{3}-7 x+c
\end{aligned}
$$

Example 20: Suppose that $f^{\prime}(x)=3 x^{2}+2 \cos x$ and $f(0)=3$. Find $f(x)$.

$$
f(x)=\int f^{\prime}(x) d x=\int\left(3 x^{2}+2 \cos x\right) d x
$$

$f(x)=\frac{3 x^{3}}{3}+2 \sin x+C$ general antiderivative.
use initial condition $f(0)=3$ to find the specific antiderivetive.

$$
\begin{array}{r}
f(0)=3\left(\frac{0^{3}}{3}\right)+2 \sin \theta+c=3 \\
0+0+c=3 \\
c=3 \\
\text { so } f(x)=x^{3}+2 \sin x+3 .
\end{array}
$$

Example 21: Suppose that $f^{\prime \prime}(x)=2 x^{3}-6 x^{2}+6 x, f^{\prime}(2)=-1$, and $f(-1)=4$. Find $f(x)$.

$$
\begin{aligned}
& f^{\prime}(x)= \int f^{\prime \prime}(x) d x=\int\left(2 x^{3}-6 x^{2}+6 x\right) d x \\
&= \frac{2 x^{4}}{4}-\frac{6 x^{3}}{3}+\frac{6 x^{2}}{2}+c_{1}=\frac{x^{4}}{2}-2 x^{3}+3 x^{2}+c_{1} \\
& f^{\prime}(2)= \frac{2^{4}}{2}-2(2)^{3}+3(2)^{2}+c_{1}=-1 \\
& 8-16+12+c_{1}=-1 \\
& 4+c_{1}=-1 \\
& c_{1}=-5
\end{aligned} \quad \begin{aligned}
f(x)=\int f^{\prime}(x) d x= & \int\left(\frac{x^{4}}{2}-2 x^{3}+3 x^{2}-5\right) d x=\frac{1}{2} \cdot \frac{x^{5}}{5}-2 \cdot \frac{x^{4}}{4}+\frac{3 x^{3}}{3}-5 x \\
= & \frac{x^{3}}{10}-\frac{x^{4}}{2}+x^{3}-5 x+c_{2}
\end{aligned}
$$

contidon next page
Example 22: Suppose that $f^{\prime \prime}(x)=12 x^{2}-18 x, f(1)=2$, and $f(-3)=1$. Find $f(x)$.

$$
\left.\begin{array}{rl}
f^{\prime}(x)=\int f^{\prime \prime}(x) d x & =\int\left(12 x^{2}-18 x\right) d x
\end{array}\right)=\frac{12 x^{3}}{3}-\frac{18 x^{2}}{2}+c_{1}, ~ \begin{aligned}
& f(x)=\int f^{\prime}(x) d x=\int\left(4 x^{3}-9 x^{2}+c_{1}\right) d x \\
&=\frac{4 x^{4}}{4}-\frac{9 x^{2}+c_{1}}{3}+c_{1} x+c_{2}=x^{4}-3 x^{3}+c_{1} x+c_{2}
\end{aligned}
$$

$$
\begin{array}{r}
f(1)=2 \equiv f(1)=1^{4}-3(1)^{3}+c_{1}(1)+c_{2}=2 \\
1-3+c_{1}+c_{2}=2 \\
-2+c_{1}+c_{2}=2 \\
c_{1}+c_{2}=4
\end{array}
$$

$$
\begin{aligned}
& f(-3)=1 \Rightarrow f(-3)=(-3)^{4}-3(-3)^{3}+c_{1}(-3)+c_{2}=1 \\
& 81+81-3 c_{1}+c_{2}=1 \\
& 162-3 c_{1}+c_{2}=1 \\
&-3 c_{1}+c_{2}=-161
\end{aligned}
$$

So we have a system of 2 equations in 2 variables $:\left\{\begin{array}{l}c_{1}+c_{2}=4 \\ \left.-3 c_{1}+c_{2}=-16\right\}\end{array}\right.$

Ex 21 cont'd

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{10}-\frac{x^{4}}{2}+x^{3}-5 x+c_{2} \\
& f(-1)=4 \Rightarrow f(-1)= \frac{(-1)^{5}}{10}-\frac{(-1)^{4}}{2}+(-1)^{3}-5(-1)+c_{2}=4 \\
&-\frac{1}{10}-\frac{1}{2}-1+5+c_{2}=4 \\
&-\frac{1}{10}-\frac{5}{10}+\frac{40}{10}+c_{2}=4 \\
& \frac{34}{10}+c_{2}=4 \\
& c_{2}=\frac{40}{10}-\frac{34}{10}=\frac{6}{10} \\
& \quad c_{2}=\frac{3}{5} \\
& f(x)=\frac{x^{5}}{10}-\frac{x^{4}}{2}+x^{3}-5 x+\frac{3}{5} \quad c_{\text {an ched against }} \quad \text { chan }
\end{aligned}
$$

Can check against original problm.
Ex 22 cont'di. Silue system by elimination or substitution.

$$
\begin{aligned}
& \left\{\begin{aligned}
& c_{1}+c_{2}=4 \quad \xrightarrow{\text { maltipy by }-1} \longrightarrow-c_{1}-c_{2}=-4 \\
&-3 c_{1}+c_{2}=-161 \xrightarrow{\longrightarrow}+3 c_{1}+c_{2}=-161 \\
& \longrightarrow \text { Add: }-4 c_{1}=-165 \\
& c_{1}=\frac{-165}{-4}=\frac{165}{4}
\end{aligned}\right. \\
& c_{1}=\frac{165}{4} \Rightarrow \frac{165}{4}+c_{2}=4 \\
& c_{2}=4-\frac{165}{4}=\frac{16}{4}-\frac{165}{4}=-\frac{149}{4} \\
& f(x)=x^{4}-3 x^{3}+c_{1} x+c_{2} \\
& f(x)=x^{4}-3 x^{3}+\frac{165}{4} x-\frac{149}{4}
\end{aligned}
$$

Chect: $f^{\prime}(x)=4 x^{3}-9 x^{2}+\frac{165}{4}$

$$
\begin{aligned}
& f^{\prime \prime}(x)=12 x^{2}-18 x \\
f(1)= & 1^{4}-3(1)^{3}+\frac{16)}{4}(1)-\frac{149}{4} \\
= & 1-3+\frac{165}{4}-\frac{149}{4}=-2+\frac{16}{4}=-2+4=2 \text { Ook }^{2}
\end{aligned}
$$ nextpage

$$
\begin{aligned}
& \text { Ex } 22 \text { contd } d \text { hating: } \\
& f(-3)=(-3)^{4}-3(-3)^{3}+\frac{165}{4}(-3)-\frac{149}{4}=81-3(-27)-\frac{495}{4}-\frac{149}{4}
\end{aligned}
$$

11

$$
=81+81-\frac{644}{4}=162-161=1 \sqrt{O K}
$$ it checks!

165 Velocity and acceleration (rectilinear motion):
H checks) 4.1.8
$\alpha 9$ We already know that if $f(t)$ is the position of an object at time t, then $f^{\prime}(t)$ is its velocity and ${ }_{6}^{\alpha^{2}} f^{\prime \prime}(t)$ is its acceleration.
$\frac{161}{4 \sqrt{6^{44}}}$ Note: Acceleration due to gravity near the earth's surface is approximately $9.8 \mathrm{~m} / \mathrm{s}^{2}$ or $32 \mathrm{ft} / \mathrm{s}^{2}$.
$\frac{4}{2}$
2 Example 23: Suppose a particle's velocity is given by $v(t)=2 \sin t+\cos t$ and its initial position is $s(0)=3$. Find the position function of the particle.

$$
\begin{gathered}
V(t)=L^{\prime}(t)=2 \sin t+\cos t \\
\Delta(t)=S_{V}(t) d t=S s^{\prime}(t) d t=S(2 \sin t+\cos t) d t \\
=2(-\cos t)+\sin t+c=-2 \cos t+\sin t+c \\
\Delta(0)=3 \Rightarrow \Delta(0)=-2 \cos (0)+\sin (0)+c=3 \\
\\
-2(1)+0+c=3 \\
-2+c=3 \\
c=5 \\
\Delta(t)=-2 \cos t+\sin t+5
\end{gathered}
$$

Example 24: Suppose a ball is thrown upward from a 30 -foot bridge over a river at an initial velocity of 40 feet per second. How high does it go? When does it hit the water?

Let $h=$ distance above the water
 acceleration: $a(t)=h^{\prime \prime}(t)=-32$
Me locity: $v(t)=h^{\prime}(t)=\int h^{\prime \prime}(t) d t$

$$
\begin{aligned}
& =\int-32 d t \\
& =-32 t+c_{1} \\
& \Rightarrow-32(0)+c_{1}=40 \\
& \quad c_{1}=40
\end{aligned}
$$

Initial velocity: $V(0)=+40 \Rightarrow-32(0)+c_{1}=40$
velocity. $v(t)=h^{\prime}(t)=32 t+40$
Position: $h(t)=\int v(t) d t=\int h^{\prime}(t) d t=\int(-32 t+40) d t$ $=-\frac{32 t^{2}}{2}+40 t+c_{2}=-16 t^{2}+40 t+c_{2}$
Initial height: $h(0)=30 \Rightarrow h(0)=-16(0)^{2}+40(0)+c_{2}=30$
Position: $h(t)=-16 t^{2}+40 t+30$

Note: If the initial velocity is V_{0} and initial position is ho, then
the position function is

$$
h(t)=-\frac{a t^{2}}{2}+v_{0} t+h_{0}
$$

where a is the acceleration due to gravity.
Ex 24 contd:

$$
h(t)=-16 t^{2}+40 t+30
$$

How high does it go? Set $v(t)=0$.

$$
h\left(\frac{5}{4}\right)=-16\left(\frac{5}{4}\right)^{2}+4^{10}\left(\frac{5}{4}\right)+30
$$

$$
\begin{aligned}
& h^{\prime}(t)=0:-32 t+40=0 \\
& 40=32 t \\
& \frac{40}{32}=t \\
& t=\frac{5}{4}=1.25 \mathrm{sec} \\
& 0\left(\frac{5}{4}\right)+30 \quad=-25+80 \\
& 50+30=5 f t \\
& 50 \text { max height }
\end{aligned}
$$

$$
=-16\left(\frac{25}{16}\right)+50+30=-25+80=555 \mathrm{ft}
$$

When does 7 hit the water? Set $h(t)=0$:

$$
\begin{aligned}
& -16 t^{2}+40 t+30=0 \\
& -2\left(8 t^{2}-20 t-15\right)=0
\end{aligned}
$$

Quadratic formula:
chad

$$
\begin{aligned}
t & =\frac{20 \pm \sqrt{(-20)^{2}-4(8)(-15)}}{2(8)} \\
& =\frac{20 \pm \sqrt{880}}{16} \\
& =\frac{20+\sqrt{880}}{16}, \frac{20-\sqrt{880}}{16}
\end{aligned}
$$

$$
h(3.104)=-16(3.104)^{2}+40(3.104)+30
$$

$$
=0 \text { it hits the water at } t=3,104 \mathrm{sec}
$$

