5.1.1

5.1: The Natural Logarithmic Function: Differentiation

An algebraic approach to logarithms:

Definition: log, x =y is equivalentto b’ =x.

The functions f(x)=b" and g(x)=1log, x are inverses of each other.

b is called the base of the logarithm.

The logarithm of base e is called the natural logarithm, which is abbreviated “In”.

The natural logarithm:

Inx=1log, x.

Therefore In x =y is equivalent to ¢’ = x and the functions f(x)=e" and g(x)=Inx are

inverses of each other.

A calculus approach to the natural logarithm:

The natural logarithm function is defined as

lnx=J-lxldt, x>0.
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For x>1, Inx can be interpreted as the area under the graph of y=— from r=1to r=x.
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Note: The integral is not defined for x <0 .
1]

For x=1, lnxz_‘- —-dt=0.
Lt

For x <1, lnx=jlxldt=— 11a,’t<0.
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Recall: The Fundamental Theorem of Calculus, Part II:

Let f be continuous on the interval [a,b]. Then the function g defined by

g(x)=rf(t)dt, a<x<b

is continuous on [a,b] and differentiable on (a,b), and g'(x) = f(x).

Apply the Fundamental Theorem of Calculus to the function f(¢)= % . \
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This means that i(ln x)= 1 .
dx X

The Derivative of the Natural Logarithmic Function
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Laws of Logarithms:

If x and y are positive numbers and r is a rational number, then:

I. In(xy)=Inx+Iny

2. ln(ﬁlenx—lny
y

Note: This also gives us In (lj =—Inx.
X

3. ln(x’)=rlnx
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Example 1: Expand In| ——— -
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The graph of y=Inx:

It can be shown that limIln x = and that lim =—o0.

X—>0 x—0"
dy 1 .. .
For x>0, —=—>0 so y=Inux is increasing on (0, ).
dx x
d’y 1 .
For x>0, e =—— <0 so y=Inx is concave down on (0,0).
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Because In1=0 and y =Inx is increasing to arbitrarily large values (lim Inx= oo), the

Intermediate Value Theorem guarantees that there is a number x such that In x =1. That number
is called e.

e~?2.71828182845904523536

(e is in irrational number—it cannot be written as a decimal that ends or repeats.)
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Example 2: Find % for y =In(2x’ +3x).
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Note: I (ln u)— 2 or, written another way, o (ln g(x )) o)

Example 3: Determine i(ln(cos x))
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Example 4: Find the derivative of f(x)= IL
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Example 5:  Find the derivative of f(x)=x"Inx.
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Example 6: Find the derivative of y = E
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Example 7: Find the derivative of g(¢) =In(71).
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Example 8: Determine the derivative of f(x)=
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Logarithmic differentiation: 3 b = <~ L\L
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To differentiate y = f(x):

1. Take the natural logarithm of both sides.
2. Use the laws of logarithms to expand.

3. Differentiate implicitly with respect to x.

4. Solve for Q
dx



Example 9:  Use logarithmic differentiation to find the derivative of
y=(x"+2)°2x+1)’(6x-1)".
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Example 10: Find y' for y=(x+3)%, A
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