t(f)= +

5.1: The Natural Logarithmic Function: Differentiation

An algebraic approach to logarithms:

<u>Definition</u>: $\log_b x = y$ is equivalent to $b^y = x$.

The functions $f(x) = b^x$ and $g(x) = \log_b x$ are inverses of each other. b is called the *base* of the logarithm.

The logarithm of base e is called the *natural logarithm*, which is abbreviated "ln".

The natural logarithm:

$$\ln x = \log_e x .$$

Therefore $\ln x = y$ is equivalent to $e^y = x$ and the functions $f(x) = e^x$ and $g(x) = \ln x$ are inverses of each other.

A calculus approach to the natural logarithm:

The natural logarithm function is defined as

$$\ln x = \int_{1}^{x} \frac{1}{t} dt$$
, $x > 0$.

For x > 1, $\ln x$ can be interpreted as the area under the graph of $y = \frac{1}{t}$ from t = 1 to t = x.

Note: The integral is not defined for x < 0.

For
$$x = 1$$
, $\ln x = \int_{1}^{1} \frac{1}{t} dt = 0$.

For
$$x < 1$$
, $\ln x = \int_{1}^{x} \frac{1}{t} dt = -\int_{x}^{1} \frac{1}{t} dt < 0$.

Recall:

The Fundamental Theorem of Calculus, Part II:

Let f be continuous on the interval [a,b]. Then the function g defined by

$$g(x) = \int_a^x f(t) dt$$
, $a \le x \le b$

is continuous on [a,b] and differentiable on (a,b), and g'(x) = f(x).

Apply the Fundamental Theorem of Calculus to the function $f(t) = \frac{1}{t}$.

$$\frac{d}{dx}\left(\int_{1}^{x}\frac{1}{t}dt\right)=\frac{1}{x}\qquad \frac{\partial}{\partial x}\int_{1}^{x}\frac{1}{t}dt = \frac{\partial}{\partial x}\left(\int u x\right) = \frac{1}{x}$$

This means that $\frac{d}{dx}(\ln x) = \frac{1}{x}$.

The Derivative of the Natural Logarithmic Function

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

Laws of Logarithms:

If x and y are positive numbers and r is a rational number, then:

1.
$$ln(xy) = ln x + ln y$$

2.
$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y$$

Note: This also gives us $\ln\left(\frac{1}{x}\right) = -\ln x$.

3.
$$\ln(x^r) = r \ln x$$

Example 1: Expand
$$\ln \left(\frac{x^3 \sqrt{x+5}}{x^2+4} \right)$$
. = $\ln \frac{x^3 (x+5)^3 2}{x^2+4}$
= $\ln \left[x^3 (x+5)^3 \right] - \ln (x^2+4)$
= $\ln x^3 + \ln (x+5)^3 - \ln (x^2+4)$
= $\ln x^3 + \ln (x+5)^3 - \ln (x^2+4)$
The graph of $y = \ln x$:

The graph of $y = \ln x$:

It can be shown that $\lim_{x\to\infty} \ln x = \infty$ and that $\lim_{x\to 0^+} = -\infty$.

For x > 0, $\frac{dy}{dx} = \frac{1}{x} > 0$ so $y = \ln x$ is increasing on $(0, \infty)$.

For x > 0, $\frac{d^2y}{dx^2} = -\frac{1}{x^2} < 0$ so $y = \ln x$ is concave down on $(0, \infty)$.

Because $\ln 1 = 0$ and $y = \ln x$ is increasing to arbitrarily large values $(\lim_{x \to \infty} \ln x = \infty)$, the Intermediate Value Theorem guarantees that there is a number x such that $\ln x = 1$. That number is called e.

$$e \approx 2.71828182845904523536$$

(e is in irrational number—it cannot be written as a decimal that ends or repeats.)

$$\frac{d}{dx} \left(\ln x \right) = \frac{1}{x}$$

Example 2: Find
$$\frac{dy}{dx}$$
 for $y = \ln(2x^5 + 3x)$.

Example 2: Find
$$\frac{dy}{dx}$$
 for $y = \ln(2x^5 + 3x)$.

$$\frac{dy}{dx} = \frac{1}{2x^5 + 3x} \frac{d}{dx} \left(2x^5 + 3x\right)$$

$$= \frac{1}{2x^5 + 3x} \left(10x^4 + 3\right) = \frac{10x^4 + 3}{2x^5 + 3x}$$

$$= \frac{1}{2x^5 + 3x} \left(10x^4 + 3\right) = \frac{10x^4 + 3}{2x^5 + 3x}$$

Note:
$$\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}$$
 or, written another way, $\frac{d}{dx}(\ln g(x)) = \frac{g'(x)}{g(x)}$

Example 3: Determine $\frac{d}{dx}(\ln(\cos x))$.

$$\frac{d}{dx} \left(\ln \left(\cos x \right) \right) = \frac{1}{\cos x} \frac{d}{dx} \left(\cos x \right)$$

$$= \frac{1}{\cos x} \left(-\sin x \right) = -\frac{\sin x}{\cos x} = -\tan x$$

Example 4: Find the derivative of $f(x) = \frac{1}{\ln x}$.

$$f(x) = \frac{1}{2nx} = (\ln x)' = -1(\ln x)^2 \frac{d}{dx} (\ln x)$$
$$= -1(\ln x)^2 \left(\frac{1}{x}\right) = -\frac{1}{x(\ln x)^2}$$

Example 5: Find the derivative of $f(x) = x^2 \ln x$.

Product Pull:
$$F'(x) = \chi^{2d} (\ln x) + (\ln x) \frac{d}{dx} (\chi^{2})$$

$$= \chi^{2} (\frac{1}{x}) + (\ln x) (2x)$$

Example 6: Find the derivative of
$$y = \frac{\ln x}{4x}$$
.

Quatrent Rul: $\frac{dy}{dx} = \frac{(4x)\frac{1}{4x}(\ln x) - (\ln x)\frac{d}{dx}(4x)}{(4x)^2}$
 $\frac{dy}{dx} = \frac{(4x)^2}{4x}$

$$= \frac{4x(\frac{1}{x}) - (\ln x)(4)}{(6x^2)} = \frac{4 - 4\ln x}{(6x^2)} = \frac{4(1 - \ln x)}{4}$$

$$= \frac{1 - \ln x}{4x^2}$$

5.1.4 Ex: y= cos(2x3+3x)

Example 7: Find the derivative of $g(t) = \ln(7t)$.

$$g'(t) = \frac{1}{7t} \frac{d}{dt} (7t) = \frac{7}{7t} \cdot 7 = \frac{7}{7t} = \frac{1}{2t}$$

$$Note: g(t) = \ln(7t) = \ln(t) + \ln(7)$$

$$g'(t) = \frac{1}{2} + 0 = \frac{1}{2}$$

Example 8: Determine the derivative of $f(x) = \frac{\ln 6x}{(x+4)^5}$.

$$=\frac{(x+4)^5(\frac{1}{x})-5(x+4)^4\ln(6x)}{(x+4)^6}$$

$$\frac{(\chi + 4)(-\chi) - 5\ln(6\chi)}{(\chi + 4)(-\chi)} = \frac{(\chi + 4)(-\chi) - 5\ln(6\chi)}{(\chi + 4)(-\chi)}$$
Logarithmic differentiation:
$$= \frac{\chi + 4 - 5 - \chi \ln(6\chi)}{\chi (\chi + 4)(-\chi)}$$
To differentiate $y = f(x)$:

Logarithmic differentiation:

To differentiate y = f(x):

- 1. Take the natural logarithm of both sides.
- 2. Use the laws of logarithms to expand.
- 3. Differentiate implicitly with respect to x.
- 4. Solve for $\frac{dy}{dx}$.

Example 9: Use logarithmic differentiation to find the derivative of

$$y = (x^{2} + 2)^{3}(2x + 1)^{3}(6x - 1)^{2}.$$

$$lny = ln \left[(x^{2} + 2)^{5}(2x + 1)^{3}(6x - 1)^{2} \right]$$

$$lny = 5 ln (x^{2} + 2) + 3 ln (2x + 1) + 2 ln (6x - 1)$$

$$\frac{d}{dx} (lny) = \frac{d}{dx} \left[5 ln (x^{2} + 2) + 3 ln (2x + 1) + 2 ln (6x - 1) \right]$$

$$\frac{1}{y} \frac{dy}{dx} = 5 \left(\frac{1}{x^{2} + 2} \right)^{2} + 3 \left(\frac{1}{2x + 1} \right)^{2}(2x) + 2 \left(\frac{1}{6x - 1} \right)^{2} \left(\frac{1}{6x - 1} \right)$$

$$\frac{dy}{dx} = y \left[\frac{10x}{x^{2} + 2} + \frac{6}{2x + 1} + \frac{12}{6x - 1} \right]$$

$$\frac{dy}{dx} = y \left[\frac{10x}{x^{2} + 2} + \frac{6}{2x + 1} + \frac{12}{6x - 1} \right]$$

$$\frac{dy}{dx} = \left[\frac{(x^{3} + 1)^{4}(9x + 1)^{2}}{x^{2} + 2} + \frac{6}{2x + 1} + \frac{12}{6x - 1} \right]$$

$$\frac{dy}{dx} = ln \left[\frac{(x^{3} + 1)^{4}(9x + 1)^{2}}{x^{2} + 1} + 2 ln(9x + 1) + 2 ln(9x + 1$$