5.4: Exponential Functions: Differentiation and Integration

Short Review:

An exponential function takes the form $f(x)=b^{x}$, where $b>0$ and $b \neq 1$.

Notice:

- Domain is $(-\infty, \infty)$.
- Range is $(0, \infty)$
- Horizontal asymptote is $y=0$.
- Always passes through the points $(0,1),(1,6),\left(-1, \frac{1}{6}\right)$

The natural exponential function:
The number e can be defined in several ways.
One definition of the number e :

$$
e \text { is the number such that } \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

The slope of the tangent line at the point $(0,1)$ is equal to 1 .

The graph of $f(x)=e^{x}$:

$$
\begin{aligned}
& \text { Another definition of the number } e \text { : } \\
& \qquad e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x} \quad \text { or, equivalently, } e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
\end{aligned}
$$

Derivatives of exponential functions:

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Example 1: Find the derivative of $f(x)=-7 e^{x}$.

$$
f^{\prime}(x)=-7 e^{x}
$$

Example 2: Find the derivative of $f(x)=5 \sqrt{e^{x}+7}$.

$$
\begin{aligned}
& \text { ind the derivative of } f(x)=5 \sqrt{e^{x}+7} \\
& f(x)=5 \sqrt{e^{x}+2}=5\left(e^{x}+7\right)^{1 / 2} \\
& f^{\prime}(x)=5\left(\frac{1}{2}\right)\left(e^{x}+7\right)^{-1 / 2} \frac{d}{d x}\left(e^{x}+7\right)=\frac{5}{2}\left(e^{x}+7\right)^{-1 / 2}\left(e^{x}\right)
\end{aligned}
$$

Example 3: Find the derivative of $f(x)=e^{x} \sin x$.

$$
\begin{aligned}
& \text { Example 3: Find the derivative of } f(x)=e^{x} \sin x \\
& f^{\prime}(x)=e^{x} \frac{d}{d x}(\sin x)+(\sin x) \frac{d}{d x}\left(e^{x}\right)=\frac{5 e^{x}}{2 \sqrt{e^{x}+7}}
\end{aligned}
$$

$$
=e^{x} \cos x+(\sin x) e^{x}=e^{x} \cos x+e^{x} \sin x
$$

Example 4: Find the derivative of $g(x)=e^{-7 x}+2 x^{3}-4 e$. $=-e^{x}(\cos x+\sin x)$

$$
\begin{aligned}
g^{\prime}(x) & =e^{-7 x} \frac{d}{d x}(-7 x)+6 x^{2}+0 \\
& =e^{-7 x}(-7)+6 x^{2}=-7 e^{-7 x}+6 x^{2}
\end{aligned}
$$

Example 5: Find the derivative of $y=e^{x^{2}+4 x}$.

$$
\begin{aligned}
& \text { Find the derivative of } y=e^{x^{2}+4 x} \\
& \frac{d y}{d x}=e^{x^{2}+4 x} \frac{d}{d x}\left(x^{2}+4 x\right)=e^{x^{2}+4 x}(2 x+4)
\end{aligned}
$$

Example 6: Find the derivative of $f(x)=\cos \left(e^{x}-x\right)$.

$$
\begin{aligned}
f^{\prime}(x) & =-\sin \left(e^{x}-x\right) \frac{d}{d x}\left(e^{x}-x\right) \\
& =\left(-\sin \left(e^{x}-x\right)\right]\left[e^{x}-1\right]=-\left(e^{x}-1\right) \sin \left(e^{x}-x\right)
\end{aligned}
$$

Example 7: Find the equation of the tangent line to the graph of $f(x)=\left(e^{x}+2\right)^{2}$ at the point $(0,9)$.

$$
\begin{aligned}
f^{\prime}(x) & =2\left(e^{x}+2\right) \frac{d}{d x}\left(e^{x}+2\right) \\
& =2\left(e^{x}+2\right)\left(e^{x}+0\right)=2 e^{x}\left(e^{x}+2\right) \\
\text { slope: } m & =f^{\prime}(0)=2 e^{0}\left(e^{0}+2\right)=2(1)(1+2)=2(3)=6
\end{aligned}
$$

Check/find point: $f(0)=\left(e^{0}+2\right)^{2}=(1+2)^{2}=3^{2}=9$

$$
\begin{array}{lll}
y-y_{1}=m\left(x-x_{1}\right) & \text { or } & y=m x+6 \\
y-9=6(x-0) \\
y-9=6 x & y=6 x+9 \\
y=6 x+9 &
\end{array}
$$

$$
\int e^{x} d x=e^{x}+c
$$

Example 8: Determine $\int\left(x^{2}-5 e^{x}\right) d x$

$$
\begin{aligned}
& \text { Example 8: Determine } \int\left(x^{2}-5 e^{x}\right) d x \\
& \int\left(x^{2}-5 e^{x}\right) d x=\frac{x^{3}}{3}-5 e^{x}+c
\end{aligned}
$$

Example 9: Find $\int e^{5 t} d t$.

$$
\begin{aligned}
& u=5 t \\
& \frac{d u}{d t}=5 \\
& d u=5 d t \\
& \frac{1}{5} d u=d t
\end{aligned}
$$

$$
\begin{aligned}
\int e^{5 t} d t & =\frac{1}{5} \int e^{u} d u \\
& =\frac{1}{5} e^{u}+C=\frac{1}{5} e^{5 t}+c \quad \begin{array}{l}
d t \\
d u=5 d t \\
\frac{1}{5} d u=d t
\end{array}
\end{aligned}
$$

Example 10: Find $\int_{1}^{3} e^{2 x-3} d x$.

$$
\begin{aligned}
\int_{1}^{3} \underbrace{e^{2 x-3}}_{e^{u}} \underbrace{d x}_{\frac{1}{2} d u} & =\frac{1}{2} \int_{u=-1} e^{u} d u \\
& =\frac{1}{2} e^{u}{ }_{u=-1}=\frac{1}{2}\left[e^{3}-e^{-1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { or (without hanging } \\
& \int_{1}^{3} e^{2 x-3} d x=\frac{1}{2} \int_{x=1}^{x=3} e^{u} d u=\left.\frac{1}{2} e^{u}\right|_{x=1} ^{x=3}
\end{aligned}
$$

\square
\qquad

$$
u=t^{2}
$$

Example 11: Find $\int t e^{t^{2}} d t$.

$$
\int \frac{t}{\frac{e^{t^{2}}}{e^{u}} d t} d t
$$

$$
\begin{aligned}
& =\frac{1}{2} \int e^{u} d u \\
& =\frac{1}{2} e^{u}+c \\
& =\frac{1}{2} e^{t^{2}}+c
\end{aligned}
$$

$$
\frac{d u}{d t}=2 t
$$

$d u=2 t d t$

$$
\frac{1}{2} d u=t d t
$$

Example 12: Determine $\int \frac{e^{x}}{\sqrt[3]{e^{x}+1}} d x$.

$$
\begin{aligned}
\int \frac{e^{x} \underbrace{\left(e^{x}+1\right)^{-1 / 3}}_{u^{-1 / 3}} \frac{d x}{d u}}{}=\int \begin{array}{l}
u^{-1 / 3} d u \\
\end{array}=\frac{u^{-\frac{1}{3}+1}}{-\frac{1}{3}+1}+c=\frac{u^{2 / 3}}{2 / 3}+c=\frac{3 u}{d x}=e^{x} \\
d u=e^{x} d x \\
2 / 3
\end{aligned} c
$$

Example 13: Determine $\int \frac{e^{x}-e^{-x}}{e^{3 x}} d x$

$$
\begin{aligned}
& \text { Example 13: Determine } \int \frac{e^{-e}}{e^{3 x}} d x \\
& \int\left(\frac{e^{x}}{e^{3 x}}-\frac{e^{-x}}{e^{3 x}}\right) d x=\int\left(e^{x-3 x}-e^{-x-3 x}\right) d x \\
& =\int\left(e^{-2 x}-e^{-4 x}\right) d x=\int e^{-2 x} d x-\int e^{-4 x} d x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{O_{\text {one }}}{u}=-2 x \\
& d u=-2 d x \\
&-\frac{1}{2} d u=d x=-\frac{1}{2} \int e^{u} d u-\left(-\frac{1}{4}\right) \int e^{u_{2}} d u_{2} \\
&=-\frac{1}{2} e^{u}+\frac{1}{4} e^{u_{2}}+C \\
&=\frac{1}{2} e^{-2 x}+\frac{1}{4} e^{-4 x}+C
\end{aligned}
$$

