7.1: Area of a Region Between Two Curves

Because the definite integral represents the "net" area under a curve, we can use integration to find the area between curves.

If f and g are continuous and $f(x) \geq g(x)$ on $[a, b]$, then the area between $y=f(x), y=g(x)$, and the lines $x=a$ and $x=b$ is given by

$$
A_{2}=\int_{\pi / 4}^{5 \pi / 4}(\cos x-\sin x) d x=\left.(\sin x+\cos x)\right|_{\pi / 4} ^{5 \pi / 4}
$$

$\begin{aligned} & \text { (should } \\ & \text { (botive) negativ) }\end{aligned}=\left.\sin x\right|_{\pi / 4} ^{0 / 4}+\left.\cos x\right|_{\pi / 4} ^{5 \pi / 4}$

$$
\begin{aligned}
& \sin \left(\frac{5 \pi}{4}\right)-\sin \left(\frac{\pi}{4}\right)+\cos \left(\frac{5 \pi}{4}\right)-\cos \left(\frac{\pi}{4}\right) \\
= & \left.-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}+\left(-\frac{\sqrt{2}}{2}\right)-\frac{\sqrt{2}}{2}\right) \\
= & \frac{-2 \sqrt{2}}{2}-\frac{2 \sqrt{2}}{2}=-\sqrt{2}-\sqrt{2}=-2 \sqrt{2}
\end{aligned}
$$

$A_{3}=\int_{5 \pi / 4}^{2 \pi}(\cos x-\sin x) d x=\sin x+\left.\cos x\right|_{\sin / 4} ^{2 \pi}$

$$
=(\sin 2 \pi+\cos 2 \pi)-\left(\sin \frac{5 \pi}{4}+\cos \frac{5 \pi}{4}\right)
$$

$$
=0+1-\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right)
$$

$$
=1-\left(-\frac{2 \sqrt{2}}{2}\right)=1+\frac{2 \sqrt{2}}{2}=1+\sqrt{2}
$$

$$
\begin{aligned}
\text { Area }=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right| & =|\sqrt{2}-1|+|-2 \sqrt{2}|+|1+\sqrt{2}| \\
& =\sqrt{2}-1+2 \sqrt{2}+1+\sqrt{2} \\
& =4 \sqrt{2}
\end{aligned}
$$

Example 3: Find the area of the region completely enclosed by the graphs of $y=x^{2}+1$ and
 Find intersection pts: Set y 's equal:

$$
\begin{aligned}
& \text { hight }=y \text { top }-y_{\text {ishim }} \\
& 2 x+9-\left(x^{2}+1\right)
\end{aligned}
$$

$$
x^{2}+1=2 x+9
$$

$$
x^{2}-2 x-8=0
$$

$$
(x-4)(x+2)=0
$$

$x=4, x=-2$ sums reasomalal from

$$
\begin{aligned}
& \longrightarrow \text { Area }=\int_{-2}^{4}\left(2 x+9-\left(x^{2}+1\right)\right) d x \\
&= \int_{-2}^{4}\left(2 x+9-x^{2}-1\right) d x=\int_{-2}^{4}\left(-x^{2}+2 x+8\right) d x
\end{aligned}
$$

$$
=-\left.\frac{x^{3}}{3}\right|_{-2} ^{4}+\left.\frac{2 x^{2}}{2}\right|_{-2} ^{4}+\left.8 x\right|_{-2} ^{4}=-\frac{4^{3}}{3}-\left(-\frac{(-2)^{3}}{3}\right)+4^{2}-(-2)^{2}+8(4)-8(-2)
$$

Example 4: Find the area of the region completely enclosed by the graphs of $y=x^{3}$ and

$$
\begin{gathered}
\text { Area }=A_{1}+A_{2}=2 A_{1} \\
=2 \int_{0}^{1}\left(x-x^{3}\right) d x \\
=\left.2\left(\frac{x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{1}
\end{gathered}
$$

$$
=\left.\left(x^{2}-\frac{x^{4}}{2}\right)\right|_{0} ^{1}=\left(1^{2}-\frac{14}{2}\right)-\left(0^{2}-\frac{0^{4}}{2}\right)=1-\frac{1}{2}
$$

$$
=\frac{1}{2}
$$

Example 5: Find the area of the region completely enclosed by the graphs of $x=y^{2}$ and $x=4 . \times$ big- $-x_{3}$ mall
$=4-y^{2}$ Find intersection pts: set x^{\prime} 's equal:

$$
\begin{aligned}
& y^{2}=4 \\
& y= \pm 2
\end{aligned}
$$

Area $\approx \sum$ height(widh)

$$
\begin{aligned}
& =\left.2\left(4 y-\frac{y^{3}}{3}\right)\right|_{0} ^{2}=\left.\left(8 y-\frac{2 y^{3}}{3}\right)\right|_{0} ^{2}=\left(8(2)-\frac{2(2)^{3}}{3}\right)-\left(8(0)-\frac{2(0)^{3}}{3}\right) \\
& =16-\frac{16}{3}=\frac{48}{3}-\frac{16}{3}=\frac{32}{3}
\end{aligned}
$$

Example 6: Find the area of the region completely enclosed by the graphs of $x=3-y^{2}$ and
$x=y+1$.

$$
\begin{aligned}
& x=y+1 \\
& x-1=y \\
& y=1 x-1
\end{aligned}
$$

slops: $m=1$
y-int: $b=-1$

$$
A=\int_{-2}^{1}\left(\left(3-y^{2}\right)-(y+1)\right) d y
$$

$$
x=-y^{2}+3
$$

Find intersections; set x 's equal $3-y^{2}=y+1$ $0=y^{2}+y-2$ $0=(y+2)(y-1)$ $y=-2, y=1$

$$
=\int_{-2}^{-2}\left(-y^{2}-y+2\right) d y
$$

$$
=\left.\frac{-y^{3}}{3}\right|_{-2}-\left.\frac{y^{2}}{2}\right|_{-2} ^{1}+\left.2 y\right|_{-2} ^{1}
$$

$$
=-\frac{1^{3}}{3}+\frac{(-2)^{3}}{3}-\frac{1^{2}}{2}+\frac{(-2)^{2}}{2}+2(1)-2(-2)
$$

$$
\begin{aligned}
=-\frac{1}{3}-\frac{8}{3}-\frac{1}{2}+\frac{4}{2}+2+4= & -\frac{9}{3}+\frac{3}{2}+6=-3+\frac{3}{2}+6 \\
& 3+\frac{3}{2}=\frac{6}{7}+\frac{3}{7}=\frac{9}{7}
\end{aligned}
$$

$$
=\frac{3}{3+\frac{3}{2}}=\frac{6}{2}+\frac{3}{2}=\frac{9}{2}
$$

