2.1.1

2.1: The Derivative and the Tangent Line Problem
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To answer the difficulty in writing a clear definition of a tangent line, we can define it as the
limiting position of the secant line as the second point approaches the first.

Definition: The tangent line to the curve y = f(x) at the pointf(a, f(a)) is the line through P
with slope A

i S = (@)

X—>a x_a

provided this limit exists.

Equivalently, —

f(a+h) f(a)

h—>0

provided this limit exists.

Note: If the tangent line is vertical, this limit does not exist. In the case of a vertical tangent,
the equation of the tangent line is x=a.

Note: The slope of the tangent line to the graph of fat the point (a, f(a)) is also called the
slope of the graph of fat x=a.

How to get the second expression for slope: Instead of using the points (a, f(a)) and (x, f(x))
on the secant line and letting x — a, we can use (a, f(a)) and (a+h, f(a+h)) andlet h —> 0.
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Example 1:

Find the slope of the curve y=4x"+1 at the point (3,37). Find the equation of
the tangent line at this point.
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Example 2: Find an equation of the tangent line to the curve y =x" at the point (1,1). tl—’- LA ~ S ‘
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Example 3: Determine the equation of the tangent line to f(x) = Jx at the point where x=2.
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The derivative:

The derivative of a functlon at x is the slope of the tangent line at the point (x, f(x)). Itis also
the instantaneous rate of change of the function at x. _% .\
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Definition: The derivative of a function f at x is the function f' whose value at x is given by

f(X+h) fx)

, provided this limit exists.

f'x)=

The process of finding derivatives is called differentiation. To differentiate a function means to
find its derivative.

Equivalent ways of defining the derivative:

o~
4}”’%\{5@& £'(x) = lim Jxr+A) - f(x) (Our book uses this one. It is identical to the
A0 Ax definition above, except uses Ax in place of A.)
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(Gives the derivative at the specific point where x=a.)

X—a

vy )= f(a)
aé.,\ f'(a) _hm—x—a

f(a h) f(a)

(Gives the derivative at the specific point where x=a.)

fla)=

Y 7O Determine g'(x) and g'(3).

Example 4: Suppose that g(x) =
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Example 5:  Suppose that f(x) =+/x” +1 . Find the equation of the tangent line at the point

where x=2.
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Example 6: Determine the equation of the tangent line to f(x) =—; at the point | —2,—— |.
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Summary:

The slope of the secant line between two points is often called a difference quotient. The
difference quotient of f at a can be written in either of the forms below.

fx)—-f(a) flath)-fa)

x—a h

Both of these give the slope of the secant line between two points: (x, f(x)) and (a, f(a)) or,
alternatively, (a, f(a)) and (a+h, f(a+h)).
The slope of the secant line is also the average rate of change of f between the two points.

The derivative of f at a is:

1) the limit of the slopes of the secant lines as the second point approaches the point (a, f(a)) .
.% 2) the slope of the tangent line to the curve y = f(x) at the point where x=a.

3) the (instantaneous) rate of change of f with respect to x at a.

i f )= f(@)

X—a x_a

4) (limit of the difference quotient)

llmf(a+h)_f(a)

h—0 h

5) (limit of the difference quotient)

Common notations for the derivative of y= f(x):

d d

f ) £ y' D.f(x) o Df (x)
d. dx

The notation @ was created by Gottfried Wilhelm Leibniz and means @ = lim =. [}—‘ﬁ:

To evaluate the derivative at a particular number a, we write

! dy
f'(a) or I

X=a



Differentiability:

Definition: A function f'is differentiable at a if f '(a) exists. It is differentiable on an open
interval if it is differentiable at every number in the interval.

Theorem: If f'is differentiable at a, then fis continuous at a.

Note: The converse is not true—there are functions that are continuous at a number but not
differentiable.

Note: Open intervals: (a,b), (—»,a), (a,®©), (—©,0).
Closed intervals: [a,b], (—0,a], [a,©), (—w©,0).

To discuss differentiability on a closed interval, we need the concept of a one-sided

derivative.
Derivative from the left: lim S~ fa)
Xx—>a xXxX—a

Derivative from the right: lim
x—a* xX—a

For a function f to be differentiable on the closed interval [a,b], it must be differentiable

on the open interval (a,b). In addition, the derivative from the right at @ must exist, and

the derivative from the left at » must exist.

Ways in which a function can fail to be differentiable:

1. Sharp corner E\ﬁ “F(nh: Q]—&—
2. Cusp —

3. Vertical tangent

4. Discontinuity
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Exampli 8: Sketch the graph of a function for which f(0) = & f'(0) ?/—1 , f(2) 7,
f'@==, f3>f'2),and f'(5)<0.
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Example 9: Use the graph of the function to draw the graph of the derivative.
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Example 10: Use the graph of the function to draw the graph of the derivative.
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