$\frac{dy}{dx} = f'(x) = \frac{d}{dx} (f(x))$

Recall: IF y= f(x)

2.2: Basic Differentiation Rules and Rates of Change

Basic differentiation formulas:

Figure 1.
$$\frac{d}{dx}(c) = 0$$
 for any constant c .
2. $\frac{d}{dx}(x^n) = nx^{n-1}$ for any real number n . (Fower (Zule)
3. $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$
4. $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$
5. $\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]$

Example 4: Find the derivative of
$$f(x) = \sqrt[3]{x} + \frac{1}{x^2}$$
.
 $f'(x) = x^{\frac{1}{5}} + x^{\frac{1}{5}} - 2x^{\frac{1}{5}} = \frac{1}{5} - 2x^{-\frac{3}{5}} - 2x^{-\frac{3}{5}} - \frac{3}{2x^{-\frac{3}{5}}} = \frac{1}{5} - \frac{3}{5} - \frac{3}{2x^{-\frac{3}{5}}} = \frac{1}{5} - \frac{3}{2x^{-\frac{3}{5}}} = \frac{3}{2x^{-$

Example 7: Find the derivative of
$$f(x) = -\sqrt[3]{6x^4}$$
.
 $f(x) = -\sqrt[3]{6} \sqrt[3]{x^4} = -\sqrt[3]{6} \sqrt[x]{3}$
 $f'(x) = -\sqrt[3]{6} \left(\frac{4}{3}x^{\frac{4}{3}}\right) = -\frac{4\sqrt[3]{6}}{3} \sqrt{\frac{4}{3}} = -\frac{4\sqrt[3]{6}}{3}$

Example 8: Find the derivative of $f(x) = \frac{10}{x^4}$.

Example 9: Find the derivative of $g(x) = \frac{2\sqrt{x}}{7}$. $q(x) = \frac{2}{7} \chi'^2$ $q'(x) = \frac{2}{7} \left(\frac{1}{2} \chi^2\right) = \frac{2}{\sqrt{3}} \chi' = \frac{-\sqrt{2}}{\sqrt{3}}$ $= \frac{1}{7} \chi$

Example 10: Find the derivative of $f(t) = \frac{3}{4t^2} - \sqrt[3]{7t}$.

Example 11: Find the derivative of
$$f(u) = \frac{7u^5 + u^2 - 9\sqrt{u}}{u^2}$$
.
 $f(u) = \frac{7u^5}{u^2} + \frac{u^2}{u^2} - \frac{9u^{1/2}}{u^2} = 7u^3 + 1 - 9u^2 = 7u^3 + 1 - 9u$
 $f'(u) = 2\sqrt{u^2} + 0 - 9\left(-\frac{3}{2}u^2\right)$
 $= 2\sqrt{u^2} + \frac{27}{2}u^{-5/2} = 2\sqrt{u^2} + \frac{27}{2\sqrt{u^5}}$

Example 12: Find the equation of the tangent line to the graph of $f(x) = 3x - x^2$ at the point (-2, -10).

$$f'(A) = 3 - 2x$$

$$m = f'(-x) = 3 - 2(-2) = 3 + 4 = 7$$

$$y - y_1 = m(x - x_1)$$

$$y - (-10) = 7(x - (-2))$$

$$y + 10 = 7(x + 2)$$

$$y + 10 = 7x + 14$$

$$y = 7x + 4$$

Example 13: Find the point(s) on the graph of $f(x) = x^2 + 6x$ where the tangent line is horizontal. Find derivative and set if equal to 0 (Slope of a horizontal live is 0) f'(x) = 2x + (eSet f'(x) = 0. 2x + (e = 0)2x = -6x = -3Find y-value: $f(-3) = (-3)^2 + (e(-3) = 9 - (8 = -9))$ (Graph is herizontal at the point (-3, -9)).

<u>Definition</u>: The *normal line* to a curve at the point *P* is defined to be the line passing through *F* that is perpendicular to the tangent line at that point.

Example 14: Determine the equation of the normal line to the curve $y = \frac{1}{r}$ at the point $\left(3, \frac{1}{2}\right)$. Find slope of tangent line; y= x $\frac{dy}{dx} = -\left(x\right)^{-1} = -\left(x^{-2}\right)^{-2} = -\frac{1}{\sqrt{2}}$ $\left| \frac{\partial y}{\partial x} \right| = -\frac{1}{3^2} = -\frac{1}{9}$ Slope of tangent live Slope of normal line is m = + 9 = 9 Egn of line: y-y,=m(x-x) **Derivatives of trigonometric functions:** $\frac{d}{dx}(\csc x) = -\csc x \cot x$ $\frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\sec x) = \sec x \tan x$ $\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$ Derivatives of the convictions have a minus i eton

Example 15: Find the derivative of $y = 2\cos x - 4\tan x$.

Example 16: Find the derivative of
$$y = \frac{\sin x}{4} + 3x^4 + \pi^2$$
.

$$y = \frac{1}{4} \sin x + 3x^4 + \pi^2$$

$$\frac{dy}{dx} = \frac{1}{4} \cos x + 12x^3 + 0$$

$$= \frac{1}{4} \cos x + 12x^3$$
Section 2.2 control

Example 17: Determine the equation of the tangent line to the graph of $y = \sec x$ at the point where $x = \frac{\pi}{4}$.

Example 18: Find the points on the curve $y = \tan x - 2x$ where the tangent line is horizontal.

Set
$$\frac{dy}{dx} = 0$$
: $(stope of a horizontal line is 0)$.
 $\frac{dy}{dx} = sec^{2}x - 2$ $(-\frac{5z}{2}, \frac{5z}{2})$ $(\frac{5z}{2}, \frac{5z}{2})$
 $sec^{2}x - 2 = 0$
 $(sec(x))^{2} = 2$
 $sec(x) = \pm \sqrt{2}$
 $(os(x) = \pm \frac{1}{\sqrt{2}}$
 $cos(x) = \pm \frac{1}{\sqrt{2}}$
 c

The <u>average rate of change</u> of y = f(x) with respect to x over the interval $[x_0, x_1]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}, \text{ where } h = x_1 - x_0 \neq 0.$$

This is the same as the slope of the secant line joining points $P(x_0, f(x_0))$ and $Q(x_1, f(x_1))$.

The <u>instantaneous rate of change</u> (or, equivalently, just the <u>rate of change</u>) of f when x = a is the slope of the tangent line to graph of f at the point (a, f(a)).

Therefore, the instantaneous rate of change is given by the <u>derivative</u> f'.

Example 19: Find the average rate of change in volume of a sphere with respect to its radius *r* as *r* changes from 3 to 4. Find the instantaneous rate of change when the radius is 3.

$$V = \frac{4}{3}\pi r^{3}$$

$$V(r) = \frac{4}{3}\pi r^{3}$$

$$V(r) = \frac{4}{3}\pi r^{3}$$

$$V(4) = \frac{4}{3}\pi (4)^{3} = \frac{2.5(e^{\pi})}{3}$$

$$V(4) = \frac{4}{3}\pi (4)^{3} = \frac{2.5(e^{\pi})}{3}$$

$$V(3) = \frac{4}{3}\pi (3)^{3} = \frac{4}{3}\pi (21) = \frac{100\pi}{3}$$

$$V(r) = \frac{4}{3}\pi r^{3} \Rightarrow V'(r) = \frac{4}{3}\pi (2r^{2})$$

$$V(3) = 4\pi r^{3} \Rightarrow V'(r) = \frac{4}{3}\pi (2r^{2})$$

$$V'(3) = 4\pi r^{3} \Rightarrow V'(r) = \frac{4}{3}\pi (2r^{2})$$

$$V'(3) = 4\pi r^{3} \Rightarrow V'(r) = \frac{4}{3}\pi (2r^{2})$$

$$V'(3) = 4\pi r^{3} \Rightarrow V'(r) = \frac{4}{3}\pi r^{3} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2}$$

$$V'(3) = 4\pi r^{3} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2}$$

$$V'(3) = 4\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2}$$

$$V'(3) = 4\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2}$$

$$V'(3) = 4\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2}$$

$$V'(3) = 4\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2}$$

$$V'(3) = 4\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2}$$

$$V'(3) = 4\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2}$$

$$V'(3) = 4\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2}$$

$$V'(3) = 4\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2}$$

$$V'(3) = 4\pi r^{2} \Rightarrow V'(r) = \frac{4}{3}\pi r^{2} \Rightarrow V'(r$$

Velocity:

If the independent variable represents *time*, then the derivative can be used to analyze motion.

If the function s(t) represents the position of an object, then the derivative $s'(t) = \frac{ds}{dt}$ is the velocity of the object.

(The velocity is the instantaneous rate of change in distance. The average velocity is the average rate of change in distance.)

Example 21: A person stands on a bridge 40 feet above a river. He throws a ball vertically upward with an initial velocity of 50 ft/sec. Its height (in feet) above the river after *t* seconds is $s = -16t^2 + 50t + 40$.

- a) What is the velocity after 3 seconds?
 - b) How high will it go?

+ c) How long will it take to reach a velocity of 20 ft/sec?

d) When will it hit the water? How fast will it be going when it gets there?

$$a^{(t)} = -16t^{2} + 50t + 40$$

$$a^{(t)} = \sqrt{(t)} = \frac{dL}{dt} = -32t + 50$$

$$\sqrt{(3)} = \sqrt{(3)} = -32(3) + 50 = -96 + 50 = -46 + \frac{91}{5ec}$$

(b) At more by
Set
$$\Delta'(t) = 0$$
: $-32t + 50 = 0$
 $50 = 32t$
 $\frac{50}{32} = t$
 $t = \frac{25}{16}$ it takes l_{16}^2 seconds to reach may
height = $\Delta(\frac{25}{16}) = -16(\frac{25}{16})^2 + 50(\frac{25}{16}) + 40 = (19.0625 \text{ Ff})$

(a) set
$$v(t) = \lambda'(t) = 20; -32t + 50 = 20$$

 $-32t = -30$
 $t = \frac{-30}{-32} = \frac{15}{16} \text{ sec}$
(a) when it hits the water,
 $s(t) = 0; -1(6t^2 + 50t + 40 = 0)$
 $t = \frac{-50 \pm \sqrt{(50)^2 - 4(-16)(40)}}{2(-16)} \Rightarrow \frac{t - 2}{62} = \frac{-50 \pm \sqrt{(50)^2 - 4(-16)(40)}}{42} = \frac{t - 2}{62} = \frac{-50 \pm \sqrt{(50)^2 - 4(-16)(40)}}{42} = \frac{100}{42} = \frac{100}{66} =$

Example 22: Suppose a bullet is shot straight up at an initial velocity of 73 feet per second. If air resistance is neglected, its height from the ground (in feet) after t seconds is given by $h(t) = -16.1t^2 + 73t$.

a. The velocity after 2 seconds.

b. How high will the bullet go?

c. When will the bullet reach the ground?

d. How fast will it be traveling when it hits the ground?

Velocity 15 h'(E) = - 31.2 ± +73
(a) h'(2) = -32.2(2) +73 =
$$B.(a + 1/sec$$

(b) ht more height, h'(E) = 0:
 $-32.2 \pm = -73$
 $\pm = -73$
 $(32.748 + 1)$
(c) set h(E) = 0:
 $-16.1(\frac{13}{57.2})^2 + 73 (\frac{72}{57.2}) \approx [82.748 + 1]$
(c) set h(E) = 0:
 $-16.1(\frac{13}{57.2}) = -16.1(\frac{13}{57.2})^2 + 73 (\frac{72}{57.2}) \approx [82.748 + 1]$
(c) set h(E) = 0:
 $-16.1(\frac{13}{57.2}) = -16.1(\frac{13}{57.2})^2 + 73 (\frac{72}{57.2}) \approx [82.748 + 1]$
(c) set h(E) = 0:
 $-16.1(\frac{13}{57.2}) = -16.1(\frac{13}{57.2})^2 + 73 (\frac{72}{57.2}) \approx [82.748 + 1]$
(c) set h(E) = 0:
 $-32.2(\frac{13}{57.2})^2 + 73 (\frac{72}{57.2}) \approx [82.748 + 1]$
(c) set h(E) = 0:
 $-32.2(\frac{13}{57.2})^2 + 73 (\frac{13}{57.2})^2 + 73 (\frac{13}{57.2}) \approx [13 + 1/5 + 1]$
(c) h(E + 73 - 0)
 $\frac{12}{16} - \frac{13}{13} + \frac{13}{57.2} + \frac{13}{57$