5.1: The Natural Logarithmic Function: Differentiation

An algebraic approach to logarithms:

<u>Definition</u>: $\log_b x = y$ is equivalent to $b^y = x$.

The functions $f(x) = b^x$ and $g(x) = \log_b x$ are inverses of each other. *b* is called the *base* of the logarithm.

The logarithm of base e is called the natural logarithm, which is abbreviated "ln".

The natural logarithm:

 $\ln x = \log_e x \, .$

Therefore $\ln x = y$ is equivalent to $e^y = x$ and the functions $f(x) = e^x$ and $g(x) = \ln x$ are inverses of each other.

A calculus approach to the natural logarithm:

For x > 1, $\ln x$ can be interpreted as the area under the graph of $y = \frac{1}{t}$ from t = 1 to t = x.

Note: The integral is not defined for x < 0.

For
$$x = 1$$
, $\ln x = \int_{1}^{1} \frac{1}{t} dt = 0$. So $Q_{N}(x) = 0$

For
$$x < 1$$
, $\ln x = \int_{1}^{x} \frac{1}{t} dt = -\int_{x}^{1} \frac{1}{t} dt < 0$.

Recall:

The Fundamental Theorem of Calculus, Part II:

Let f be continuous on the interval [a,b]. Then the function g defined by

$$g(x) = \int_{a}^{x} f(t) dt, \qquad a \le x \le b$$

is continuous on [a,b] and differentiable on (a,b), and g'(x) = f(x).

Apply the Fundamental Theorem of Calculus to the function $f(t) = \frac{1}{t}$.

$$\frac{d}{dx}\left(\int_{1}^{x} \frac{1}{t} dt\right) = \frac{1}{x}$$
This means that $\frac{d}{dx}(\ln x) = \frac{1}{x}$.

The Derivative of the Natural Logarithmic Function $\frac{d}{dx}(\ln x) = \frac{1}{x}$

Laws of Logarithms:

If *x* and *y* are positive numbers and *r* is a rational number, then:

1.
$$\ln(xy) = \ln x + \ln y$$

2. $\ln\left(\frac{x}{y}\right) = \ln x - \ln y$
Note: This also gives us $\ln\left(\frac{1}{x}\right) = -\ln x$. $\ln\left(\frac{1}{x}\right) = \ln(x) - \ln(x)$
 $= 0 - \ln(x)$
3. $\ln(x^r) = r \ln x$

Example 1: Expand
$$\ln \left(\frac{x^3\sqrt{x+5}}{x^2+4}\right)$$
.
 $\ln \left(\frac{x^3(x+5)^2}{(x^2+5)(x-3)}\right) = \ln \left[x^3(x+5)^{3/2}\right] - \ln \left[(x^2+5)(x-3)\right]$
 $= \ln (x^3) + \ln (x+5)^{3/2} - \left[\ln (x^2+5) + \ln (x-3)\right]$
 $= \ln (x^3) + \ln (x+5)^{3/2} - \ln (x^2+5) - \ln (x-3)$
 $= \frac{3\ln (x^3) + \ln (x+5)^{3/2} - \ln (x^2+5) - \ln (x-3)}{\sqrt{3}}$
The graph of $y = \ln x$: $\sqrt{2} \ln x$ is area under graph of $f(\ell) = \frac{1}{2}$.
It can be shown that $\lim_{x \to \infty} x = \infty$ and that $\lim_{x \to \infty} x = -\infty$.
For $x > 0$, $\frac{dy}{dx} = \frac{1}{x} > 0$ so $y = \ln x$ is increasing on $(0,\infty)$.
 $\frac{1}{4\pi x} \left(\frac{1}{x^3}\right) = \frac{1}{4\pi} \left(\frac{1}{x^3}\right) = -1\pi^2$.
For $x > 0$, $\frac{d^3y}{dx^2} = -\frac{1}{x^2} < 0$ so $y = \ln x$ is concave down on $(0,\infty)$.
 $\frac{1}{4\pi x} \left(\frac{1}{x^3}\right) = \ln x + \frac{1}{x^3} = 0$ so $y = \ln x$ is concave down on $(0,\infty)$.
 $\frac{1}{4\pi x} \left(\frac{1}{x^3}\right) = \ln x + \frac{1}{x^3} = 0$ so $y = \ln x$ is concave down on $(0,\infty)$.
 $\frac{1}{4\pi x} \left(\frac{1}{x^3}\right) = \frac{1}{x^3} + \frac{1}{x^3} = 0$ so $y = \ln x$ is concave down on $(0,\infty)$.
 $\frac{1}{4\pi x} \left(\frac{1}{x^3}\right) = \frac{1}{x^3} + \frac{1}{x^3} = 0$ so $y = \ln x$ is concave down on $(0,\infty)$.
 $\frac{1}{4\pi x} \left(\frac{1}{x^3}\right) = \frac{1}{x^3} + \frac{1}{x^3}$

Because $\ln 1 = 0$ and $y = \ln x$ is increasing to arbitrarily large values $\left(\lim_{x \to \infty} \ln x = \infty\right)$, the Intermediate Value Theorem guarantees that there is a number *x* such that $\ln x = 1$. That number is called *e*.

$e\approx 2.71828182845904523536$

(*e* is in irrational number—it cannot be written as a decimal that ends or repeats.)

$$S_0$$
, $ln(e) = 1$

Recall
$$d_{0x}(l_{0x}x) = \frac{1}{x}$$

Example 2: Find $\frac{dy}{dx}$ for $y = \ln(2x^5 + 3x)$.
Example 2: Find $\frac{dy}{dx}$ for $y = \ln(2x^5 + 3x)$.
 $d_{0x} = 4(2x^5 + 3x)^3(10x^1 + 3)^3$
Example 2: $d_{0x} = \frac{1}{2x^5 + 3x}$
 $d_{0x}(2x^5 + 3x)$
 $d_{0x} = -\frac{1}{2x^5 + 3x}$
 $d_{0x}(2x^5 + 3x)$
 $d_{0x} = -\frac{1}{2x^5 + 3x}$
Note: $\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}$ or, written another way, $\frac{d}{dx}(\ln g(x)) = \frac{g'(x)}{g(x)}$.

Example 3: Determine
$$\frac{d}{dx}(\ln(\cos x))$$
.
 $\frac{d}{dx}(\ln(\cos x)) = \frac{1}{\cos x} \frac{d}{\partial x}(\cos x)$
 $= \frac{1}{\cos x}(-\sin x) = -\frac{\sin x}{\cos x} = -\frac{1}{\cos x}$

Example 4: Find the derivative of
$$f(x) = \frac{1}{\ln x}$$
.
 $f(x) = (\ln x)^{-1}$
 $f'(x) = -1(\ln x)^{-2} \frac{d}{dx} (\ln x) = -1(\ln x)^{-2} (\frac{1}{x}) = -\frac{1}{x(\ln x)^{2}}$

Example 5: Find the derivative of
$$f(x) = x^2 \ln x$$
.

Example 6: Find the derivative of
$$y = \frac{\ln x}{4x}$$
.

Logarithmic differentiation:

To differentiate y = f(x):

- 1. Take the natural logarithm of both sides.
- 2. Use the laws of logarithms to expand.
- 3. Differentiate implicitly with respect to *x*.

4. Solve for
$$\frac{dy}{dx}$$
.

Example 9: Use logarithmic differentiation to find the derivative of

 $v = (x^2 + 2)^5 (2x + 1)^3 (6x - 1)^2$. Take In of both sides: In(y) = In[(2+2) (2x+1)3((2x-1)2] Apply log properties: lny= 5ln(x2+2)+3ln(2x+1)+2ln((ex-1)) Implicit diff: $\frac{d}{dx}(\ln y) = \frac{d}{dx}\left(5\ln(2x+1) + 2\ln(4x+1)\right)$ $\frac{1}{y}\frac{dy}{dx} = 5\left(\frac{1}{x^{2}+2}\right)^{(2d)} + 3\left(\frac{1}{2x+1}\right)^{(2)} + 2\left(\frac{1}{6x-1}\right)^{(6)}$ Chean up and solve for $\frac{dy}{dx}$: $\frac{dy}{dx} = \frac{y}{y} \left[\frac{10x}{x^{2}+z} + \frac{6}{2xt1} + \frac{12}{6x-1} \right]$ Put original function M fun (Note: not worked during class) y= (x2+1)t (oinx)2 lny = ln [(3) + 13 (3) - x3 $lny = ln(x^{3}+1)^{4} + ln(sinx)^{3} - ln(x^{3})$ luy = 4 ln (-2 +1) + 2 ln (sinx) - 1/2 ln (2) dr (long) = d/aln (x3+1) + 2ln (sinx) - 1/2 ln(x) $\frac{1}{4}\frac{dy}{dx} = 4\left(\frac{1}{x^{3}x}\right)^{(3x^{2})} + 2\left(\frac{1}{x^{3}x}\right)^{(\cos x)} - \frac{1}{3}\left(\frac{1}{x}\right)$

$$y = \frac{dy}{dx} = \frac{y\left[\frac{12x^2}{x^3+1} + 2\cot x - \frac{1}{3x}\right]}{\sqrt[3]{x^3+1}}$$

$$y = \frac{dy}{dx} = \frac{(x^3+1)^4 \sin^2 x}{\sqrt[3]{x^3+1}} \left(\frac{12x}{x^3+1} + 2\cot x - \frac{1}{3x}\right)$$