11.4.1

11.4: The Cross Product

The cross product (or vector product) of two vectors in R’ (3-dimensional space) yields a vector
that is orthogonal to both of the vectors that produced it.

Definition: The Cross Product

Suppose that u = <u1, u,, u3> and v= <V1,V2,v3> . The cross product of u and v is the vector

wx v = (UyV; — UV, UgV, — UV, UV, — UV, )

= <U2V3 — U3V, —(Uy Vs — U3V ), UV, — U2V1>-

Note: The cross product is not defined for two-dimensional vectors.
The determinant:

The determinant is a concept from linear algebra. The determinant is a characteristic of square
matrices, but it can help us calculate the cross product of two vectors.

b
The determinant of a 2x2 matrix is . d‘ =ad -bc .
The determinant of a 3x3 matrix is
a b c
e f d f d e
d e f|=a h K - " +C h
g h k g g

=a(ek — fh)—b(dk — fg) + c(dh—eQ).
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Example 1: Find the determinant of [3 9} .
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Example 2: Find the determinant of [ } .
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Example 3: Find the determinantof | 7 5 -8].
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The determinant approach to calculating the cross product.

Put the standard unit vectors i, j, and k in Row 1, the first vector in Row 2, and the second vector
in Row 3.

The cross product of u=u,i+U,j+u;k and v=Vvji+Vv,j+VvK is

U, U U, U .+u1 U,

uxv=
VZ V3

Vi Vs Vi Y,

= (UyV3 — U3V, )i — (U V5 —U;V )+ (U, — U,V K

Note: This is technically not a determinant, because the first row (containing i, j, and k) contains
vectors, not scalars.

Example 4: Suppose u = <3,1,—2> and v = <—4,2,6> . Calculate uxv and vxu. Show that the

cross product is orthogonal to both of the original vectors.
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Example S: Suppose u=i+6j and v=-2i+ j+k. Calculate uxv.
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Properties of the cross product:

Algebraic properties of the cross product:

Let u, v, and w be vectors in R*, and let ¢ be a scalar.

uxv=—(vxu)
ux(v+w)=uxv)+((uxw)
Cluxv)=Cuxv=uxCcv
ux0=0xu = -5
u-(vAw) = (uxv) w

)
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e

Geometric properties of the cross product:

Let u and v be nonzero vectors in R’, and let @ be the angle between u and v.
Then,

6. wuxv is orthogonal to both u and v.

7 [ v =|ufv]sine

8. uxv=0 ifand only if u and v are scalar multiples of each other.

9 ||u X v|| is the area of parallelogram having u and v as adjacent sides.

. 1 . . .
Note: This means that §||u X v|| is the area of a triangle having u and v as

adjacent sides.

The right-hand rule:

The cross product follows what is known as the right-hand rule. This means that if you curl the
fingers of your right hand from vector u to vector v, your thumb will point in the direction of
uxv.

Note: This means that k =ixj .
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Example 6: Suppose u = <2,—l,3> and v= <—4, 2, —6> . Calculate uxv.
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Example 7: Find the area of the triangle with vertices A(2,-3,4), B(0,1,2), and C(-1,2,0).
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Example 8: Suppose the following points are the vertices of a quadrilateral. Determine
whether the quadrilateral is a parallelogram. Find the area.
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