12.1: Vector-Valued Functions

12.1.1

In R* , a plane curve can be described using parametric equations x = f(t) and y = g(t), where
f and g are continuous functions of t on an interval I. (See Section 10.2 for a review.)

In R* , a space curve can be described using parametric equations x = f(t), y=g(t), and
z =h(t), where f, g, and h are continuous functions of t on an interval I.

The plane curve or space curve is defined to be the graph (the set of ordered pairs or ordered
triples) along with the defining parametric equations.

Note: The same graph can be generated by different sets of parametric equations. These are
considered different curves, even though their graphs are the same.
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Example 1:  Sketch the graph defined by x(t) =t*>—2 and y(t)=1+t.
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Example 2: Compare the graph defined by X(t) =2sint and y(t) =3cost with the graph
K\.VV defined by x(t)=2cos2t and y(t)=3sin2t. L (D)= 2o 2L
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12.1.2

Real-valued functions: Output is a real number.
Vector-valued functions: Output is a vector.

Definition: A function of the form

r) = fOi+g®j=(f®,9(1) (in R*)
or
r(t)= f®i+g®j+h®k =(f (1), g(t).h®) (in RY)

is called a vector-valued function. The component functions f, g, and h are real-valued
functions of the parameter t.
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When working with vector-valued functions, we usually think of each output as a position
vector. The initial point of a position vector is the origin; the terminal point is a point on a curve.
Thus, as t increases, the vector-valued function traces the graph of a curve.

Example 3: Sketch the curve represented by r(t) =costi+sint j+tk.
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Example 4: What curve is represented by r(t) = <3 —t,4+2t,6— 3t> ?
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12.1.3

Example 5:  Sketch the curve represented by r(t) = (2t—1)i+(t’ +1) j+ (4 -t*) k.
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Domain of vector-valued functions:

For a value of t to be in the domain of a vector-valued function, it needs to be in the domain of
all the component functions.

Example 6: Find the domain of s(t) =( In(t + 1),sin(t),L>.
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Example 7: Find the domain of s(t) = <\/4— e' 3>
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12.1.4

Representing a curve by a vector-valued function:

Example 8: Represent the plane curve y =4 — X’ by a vector-valued function.
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Example 9: Represent the plane curve X + y? =1 by a vector-valued function.
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Example 10: Find a vector-valued function that represents the line segment joining points
P(3,4,-2) and Q(—4,-3,-1).
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Example 11: Find a vector-valued function that represents the curve of intersection of the
paraboloid z = 4x” +y* and the parabolic cylinder y = x°.
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12.1.5

Limits:

Definition: Limit of a Vector-Valued Function

If r(t)= < f(t), g(t)> , then limr(t) = <lim f(t),lim g(t)> , provided these limits of the

component functions exist.

If r(t) = { (1), g(), (D)), then limr(t) = <lim f (t).lim g(t), lim h(t)> , provided these

limits of the component functions exist.

The properties of limits (sum, difference, scalar multiples, etc.) for vector-valued functions are
similar to those for real-valued functions.

Note: The limit of a vector-valued function is a vector.
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Example 12: Suppose that r(t) = 31Tnt + t
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Example 13: Determine .1é1—n3<
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Continuity:

Definition:

A vector-valued function r is continuous at a point given by
t=a if limr(t) exists and limr(t)=r(a).
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A vector-valued function r is continuous on an interval | if it is
continuous at every point in the interval.

Example 14: On what intervals is r(t) = <tan(t),t,t2> continuous?
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Example 15: On what intervals is r(t) = <\/4 —t’ ,%,%
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