13.4: Differentials

Essential question in calculus: If we make an incremental change in one variable, what happens to the other variables?

<u>Increments</u>: Δx , Δy , Δz , etc.

<u>Differentials</u>: dx, dy, dz, etc.

For y = f(x), $\Delta y = f(x + \Delta x) - f(x)$ For z = f(x, y), $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$.

For the independent variable(s), we define the differential to be equal to the increment. For the dependent variable, we define the differential in terms of the derivative.

Column For y = f(x), we let $dx = \Delta x$. Then the differential of y is dy = f'(x) dx.

The differential dy has two uses:

(a) as an approximation for the increment $\Delta y \cdot (dy \approx \Delta y)$

(b) as a building block for calculus concepts (integration, etc).

To extend the concept of differentials to functions of two or more variables, we need to use partial derivatives.

Definition:

If z = f(x, y), then the differentials of the independent variables x and y are the increments:

$$dx = \Delta x \qquad \qquad dy = \Delta y$$

The total differential of the dependent variable z is

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = f_x(x, y) dx + f_y(x, y) dy.$$

<u>Note</u>: For small increments of *z*, $dz \approx \Delta z$ (for differentiable functions).

Example 1: Find the total differential for
$$z = x^2y + x^4 - 5y^3$$
.
 $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$
 $dz = (2xy + 4x^3) dx + (x^2 - (5y^2) dy)$

$$\frac{\partial \omega}{\partial x} = \lambda x y z^{2} + 0$$

$$\frac{\partial \omega}{\partial y} = -\lambda^{2} z^{2} + (\omega \cdot (yz))(z) \qquad 13.4.2$$

$$= -x^{2} z^{2} + z \cos(yz)$$

$$dw = \frac{\partial \omega}{\partial x} dx + \frac{\partial \omega}{\partial y} dy + \frac{\partial \omega}{\partial z} dz \qquad 2 \frac{\partial \omega}{\partial z} = -x^{2} y(zz) + (\omega \cdot (yz))(y)$$

$$= \frac{\partial \omega}{\partial x} dx + (x^{2} z^{2} + z \cos(yz))dy + (zx^{2} yz^{2} + y \cos(yz))dz \qquad 2 \frac{\partial \omega}{\partial z} = -x^{2} y^{2} + y \cos(yz)$$

Differentiability:

<u>Definition</u>: A function *f* given by z = f(x, y) is *differentiable at* (x_0, y_0) if Δz can be written in the form $\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$ where both $\varepsilon_1 \rightarrow 0$ and $\varepsilon_2 \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow (0, 0)$. The function *f* is differentiable in a region *R* if it is differentiable at each point

in *R*.

<u>Important Note</u>: Existence of the partial derivatives f_x and f_y at the point (x_0, y_0) <u>does NOT</u> <u>guarantee</u> the function is differentiable at (x_0, y_0) .

However, if the partial derivatives are <u>continuous</u> in a region, then the function is differentiable in the region:

<u>Theorem</u>: If *f* is a function of *x* and *y*, and if f_x and f_y are continuous on an open region *R*, then f is differentiable on *R*.

Using the total differential as an approximation for the increment:

Example 3: Suppose $z = f(x, y) = \frac{y}{x}$. Calculate the increment Δz as y changes from 2 to 2.1, and x changes from 1 to 1.03. Use the total differential dz as an approximation for Δz , and compare it to the actual value of Δz .

$$Z = \frac{4}{x} = 4x^{2}$$

$$dy = 2y = 0.1$$

$$dx = 0.03$$

$$dx = 0.03$$

$$dx = 0.03$$

$$dx = 0.03$$

$$dz = (1,2) = -\frac{1}{12}(0.03) + \frac{1}{1}(0.0)$$

$$dz = (1,2) = -\frac{1}{12}(0.03) + \frac{1}{1}(0.0)$$

$$dz = 0.06 + 0.1$$

$$= -\frac{4}{x^{2}} dx + \frac{1}{x} dy$$

$$= 0.04$$

Error analysis:

When using a formula to compute a physical quantity, any measurement error in the independent variables will cause <u>propogated error</u> in the dependent variable. We can use the total differential to estimate the propogated error.

Estimating propagated error: Suppose that x and y are the measured values of two variables, and that $dx = \Delta x$ and $dy = \Delta y$ are the maximum possible measurement errors. Then the estimated propagated error in z = f(x, y) is Estimated propagated error: $dz = f_x(x, y) dx + f_y(x, y) dy$ Estimated relative error: $\frac{dz}{z}$

Example 4: The measurements of the height and inside radius of a right circular cone are 50 feet and 30 feet, respectively. The maximum possible error in each measurement is about 3 inches per each 10 feet of measured length. Approximate the maximum propagated error and the relative error in computing the volume of the cone.

	tind dur and dur.
$V(r,h) = \frac{1}{3}\pi r^2 h$	Rodius
$dV = \frac{3Y}{3r} dr + \frac{3Y}{3h} dh$	r= 30 ff =) ar = 0'sequent
= the (ar) dr+ to Tri dh	$= 9 i \gamma \left(\frac{1+1}{12} \right)$
and dis + 1 + r ² dh	Theight: = $0.75ft$ h = 50ft = 5 (0' segments h = 50ft = 5 (0' segments
$dV _{v=30} = \frac{2}{3}\pi (30H)(50H)(0.75H)$ $h=50 + \frac{1}{3}\pi (30H)(1.25H)$	= dh = 5 (3in) = (3in) (12in)
$d_{12}, 14 = 750 \pi 4^3 + 375 \pi 4^3$	= (125-15-ff Max propagated) = 1.25 ff
Relative = $\frac{dV}{V} = \frac{(125\pi ft^3)}{\frac{1}{2}\pi (30ft)^2(50ft)}$	errod
Error = 0.075 = 7.5	22