14.1.1

14.1: Iterated Integrals and Area in the Plane

Suppose f is a function of two variables that is continuous on the rectangle R =[a,b]x[c,d].

d
The notation _[ f(x,y) dy means that we consider X to be fixed (constant), and we integrate
C

f(X,y) with respecttoy from y=c to y=d . This is called partial integration. The result is a
function of X:

A(X) = Ld f(x,y)dy.

This new function A(X) can be integrated with respect to X from x=a to X =b, resulting in:
j A(X) dx = _[ U f(xy) dy} dx

b ed

We omit the brackets and write '[ '[ f(x,y) dy dx, called an iterated integral.
aJc

Note: The order of integration is “from the inside out.”

b
Similarly, the notation '[ f(x,y) dx means that we consider y to be fixed (constant), and we

integrate f(X,y) with respect to X from x=a to Xx=b. The result is a function of y:

By =, fouy) dx.

This new function B(y) can be integrated with respect to y from y=¢ to y=d, resulting in:

JBnd I[I f(x. y)dX]dy [7] foxy) axdy
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Example 2: Calculate jy
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Definition: (Double Integral) (See Section 14.2 in Larson/book.) e oq&\ —= Si_
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Suppose f(X,Y) is defined on a closed, bounded region R in the plane. Also = 3

suppose that R is partitioned into n rectangles in such a way that the norm of the \§
partition (diagonal of the largest rectangle, denoted ||A|| ) approaches 0 as the _—

—>0as n—ow).
Then the double integral of f over R is

jjf(x,y)dA_ lim Zf(xl,yl)AA

where AA is the area of the ith rectangle, and (X, Y;) is any point in the ith
rectangle (provided this limit exists).

Using double integrals to find area:

To find area of a region, we integrate the constant function f(X,y)=1. (Because if f(x,y)=1,
then f(X;,y,) AA =AA.If we add up all the areas AA , we can approximate the area of our
region.)

We’ll also need the following theorem, which allows us to break down our double integral
_[ _[ f (X, y) dA into an iterated integral using dx and dy .
R
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Fubini’s Theorem: (Minor League Version) /’ { a ’\“O %" EC.OQ

If f(x,y) is continuous on the rectangle R =[a,b]x[c,d], then a & XL n

H f(X,Y) dA:I:jcd f(x,y)dy dx:jcdf: f(x,y)dxdy. =Y
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Example 4: Use an iterated integral to find the area of the region described by the inequalities -
1<X<5 2<y<7 R
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Theorem: (Area of a Region) 4%\4‘ 4(\—*(‘& - 23-3 A‘ 3]
The area of the region bounded by the graphs of y=0,(X), y=0,(x), X=a, X=Db is given
by S\o Sg;(*
gl(x) \C\‘3
I _[ " pr0V1ded g, and g, are continuous..
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The area of tge reg %n bounded by the graphs of x=h(y), x=h,(y), y=c, y=d is given
by ?) dw Y

hl(y) . .
I _[h( : dx dy, provided h, and h, are continuous.
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Example 5: Find the area of the triangle bounded by the graphs of y =2x, y=0,and x=3.
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14.1.4

Example 6: Set up integrals to find the area of the region bounded by the graphs of y = Jx
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Example 7: Find the area of the region bounded by the graphs of y =2x and y = x"'

Example 8: Find the area of the region bounded by the graphs of Xy=9, y=
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Switching the order of integration:

Example 9: For the given iterated integral, sketch the region of integrption and then switch the

order of integration. ) (\‘7\ _P{‘ﬁ
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Example 10: For the given iterated integral, sketch the region of integration and then switch the
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Example 11: Sketch the region R whose area is given by the iterated integral. Switch the order] \/
of integration and show that both orders yield the same area.
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Example 12: Sketch the region R whose area is given by the iterated integral. Switch the order
of integration and show that both orders yield the same area.
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Example 13: Calculate the iterated integral.
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14.1.7

Example 14: Calculate the iterated integral.

f _[0” X cos(Xy) dx dy



