<u>11.7:</u> Cylindrical and Spherical Coordinates

Cylindrical coordinates:

Cylindrical coordinates extend the polar coordinate system into \mathbb{R}^3 .

P(x, y, z) —	$ \rightarrow P'(r,\theta,z) $
Rectangular	Cylindrical

In a cylindrical coordinate system, a point *P* in \mathbb{R}^3 is represented by an ordered triple (r, θ, z) .

- 1. (r, θ) is a polar representation of the projection of *P* in the *xy*-plane.
- 2. *z* has the same meaning as in rectangular coordinates.

<u>Note</u>: Cylindrical coordinates are especially useful for representing surfaces for which the *z*-axis is the axis of symmetry (cylindrical surfaces and surfaces of revolution).

Example 1: Convert the point with rectangular coordinates $(-2\sqrt{2}, 2\sqrt{2}, 2)$ to cylindrical coordinates. $\mathcal{A} = -25\mathbb{Z}$, $\mathcal{F} = 25\mathbb{Z}$, $\mathcal{Z} = \mathcal{I}$

$$\frac{3}{5\pi/3} \xrightarrow{11.7.2}$$

Convert the point with cylindrical coordinates $\left(3, \frac{\pi}{3}, -5\right)$ to rectangular Example 2: x= rcost= 3cos(=)=3(=)= 3 coordinates. y= rsind = 3sin(=) = 3(== 3)= $(x, y, z) = (\frac{3}{2}, \frac{3\sqrt{2}}{2}, -5)$

Example 3: Convert the equation $z = x^2 + y^2$ in rectangular coordinates into an equation in cylindrical coordinates. Circular Paraboloid centered

Example 4: Convert the equation $z = x^2 - y^2$ in rectangular coordinates into an equation in cylindrical coordinates. Z

Example 5: Convert the equation $4 = x^2 + y^2$ in rectangular coordinates into an equation in cylindrical coordinates. $4 = v^2$

Example 6: Convert the equation $x^2 + y^2 = z^2$ in rectangular coordinates into an equation in cylindrical coordinates. $v^2 = 2^2$

r = 2

In a spherical coordinate system, a point *P* in \mathbb{R}^3 is represented by an ordered triple (ρ, θ, ϕ) .

- 1. ρ is the distance between *P* and the origin, $\rho \ge 0$.
- 2. θ is the angle between the positive x-axis and the projection of \overline{OP} in the xy-plane (same θ as in cylindrical coordinates).
- 3. ϕ is the angle between the positive *z*-axis and \overrightarrow{OP} ($0 \le \phi \le \pi$)

Note: Spherical coordinates are especially useful for surfaces that are symmetric about a point, or center. $\uparrow \geq$

Converting between rectangular and spherical coordinate systems:

$x = \rho \sin \phi \cos \theta$	$y = \rho \sin \phi \sin \theta$	$z = \rho \cos \phi$
$x^2 + y^2 + z^2 = \rho^2$	$\tan\theta = \frac{y}{x}$	$\phi = \cos^{-1}\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$

Converting between cylindrical and spherical coordinate systems $r \ge 0$:			
$r^2 = \rho^2 \sin^2 \phi$	$\theta = \theta$	$z = \rho \cos \phi$	
$r^{2} = \rho^{2} \sin^{2} \phi$ $\int r^{2} = \rho^{2} \sin^{2} \phi$ $\rho = \sqrt{r^{2} + z^{2}}$	$\theta = \theta$	$\phi = \cos^{-1}\left(\frac{z}{\sqrt{r^2 + z^2}}\right)$	

Example 8: Convert the equation $\rho = c$ (c a constant) in spherical coordinates into an equation in rectangular coordinates. A sphere of radius C

Example 9: Convert the equation $\phi = c$, $0 < c < \frac{\pi}{2}$, in spherical coordinates into an equation

$$\frac{x^{2} + y^{2}}{\sqrt{2}} = \frac{z^{2}}{z^{2}} \left(\frac{g_{1} h_{1}^{2} c}{(c + g_{2})} \right) = \frac{x^{2} + y^{2}}{\sqrt{2}} - \frac{z^{2}}{c + g_{2}^{2}} = 0$$

$$x^{2} + y^{2} = \frac{z^{2}}{z^{2}} + \log^{2} c$$

$$\frac{x^{2} + y^{2}}{\sqrt{2}} = \frac{z^{2}}{z^{2}} + \log^{2} c$$

$$\frac{x^{2} + y^{2} - 3z^{2}}{z^{2}} = 0 \text{ to spherical coordinates from rectangular coordinates.}$$

$$\frac{y^{2} + y^{2} - 3z^{2}}{\sqrt{2}} = \frac{y^{2} + y^{2} - 3z^{2}}{z^{2}} = 0$$

$$\frac{y^{2} + y^{2} - 3z^{2}}{z^{2}} = \frac{y^{2} + y^{2} - 3z^{2}}{z^{2}} = 0$$

$$\frac{y^{2} + y^{2} - 3z^{2}}{z^{2}} = \frac{y^{2} + y^{2} + y^{2} - 3z^{2}}{z^{2}} = 0$$

$$\frac{y^{2} + y^{2} - 3z^{2}}{z^{2}} = \frac{y^{2} + y^{2} + y^{2}$$

Example 13: Convert the point that is represented by (1,2,3) in rectangular coordinates to cylindrical and spherical coordinates.

cylindrical and spherical coordinates.

$$y^{2} = y^{2} + y^{2} = i^{2} + z^{2} = 5$$

 $y = J^{2}$
 $y^{2} = x^{2} + y^{2} + z^{2} = i^{2} + z^{2} + z^{2} = i^{4}$
 $p = J^{4}$
Cylindrical: $(r, \theta, z) = (J^{5}, J^{6n'}(z, 3))$
Cylindrical: $(r, \theta, z) = (J^{5}, J^{6n'}(z, 3))$
Cylindrical: $(p, \theta, \phi') = (J^{6}, J^{6n'}(z), cos'(\frac{3}{5^{6}}))$