11.4.1

11.4: The Cross Product

The cross product (or vector product) of two vectors in R’ (3-dimensional space) yields a vector
that is orthogonal to both of the vectors that produced it.

Definition: The Cross Product

Suppose that u = <u1, u,, u3> and v= <V1,V2,v3> . The cross product of u and v is the vector

wx v = (UyV; — UV, UgV, — UV, UV, — UV, )

= <U2V3 — U3V, —(Uy Vs — U3V ), UV, — U2V1>-

Note: The cross product is not defined for two-dimensional vectors.
The determinant:

The determinant is a concept from linear algebra. The determinant is a characteristic of square
matrices, but it can help us calculate the cross product of two vectors.

a b
The determinant of a 2x2 matrix is . d‘ =ad -bc .
The determinant of a 3x3 matrix is
a b c
e f d f d e
d e f|=a h K - " +C h
g h k g g

=a(ek — fh)—b(dk — fg) + c(dh—eQ).
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Example 1: Find the determinant of [3 } .
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Example 2: Find the determinant of [ { 9]
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4 2 3
Example 3: Find the determinantof | 7 5 -8].
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The determinant approach to calculating the cross product.

Put the standard unit vectors i, j, and k in Row 1, the first vector in Row 2, and the second vector
in Row 3.

The cross product of u=u,i+U,j+u;k and v=Vvji+Vv,j+VvK is

u2 u3 .
1—

u. Uy, U U,

uxyv= +

Va V5 Vi Vs Vi Y,

= (UyV3 — U3V, )i — (U V5 —U;V )+ (U, — U,V K

Note: This is technically not a determinant, because the first row (containing i, j, and k) contains
vectors, not scalars.

Example 4: Suppose u = <3,1,—2> and v = <—4,2,6> . Calculate uxv and vxu. Show that the

cross product is orthogonal to both of the original vectors. .
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Example 5: Suppose u=i+6j and v=-2i+j+k. Calculate uxv.\ Qwow c)Y'\$ A ~
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11.4.3

Properties of the cross product:

Algebraic properties of the cross product:

Let u, v, and w be vectors in R*, and let ¢ be a scalar.

uxv=—(vxu)
ux(v+w)=uxv)+((uxw)
Cluxv)=Cuxv=uxCcv
ux0=0xu = D
u-(vxw)=(u><v)~w

Nk =

PR —

k\%os W v L -'-'-O

Geometric properties of the cross product:

Let u and v be nonzero vectors in R’, and let @ be the angle between u and v.
Then,

6. wuxv is orthogonal to both u and v.

7 [ v =|ufv]sine

8. uxv=0 ifand only if u and v are scalar multiples of each other.

9 ||u X v|| is the area of parallelogram having u and v as adjacent sides.

. 1 . . .
Note: This means that §||u X v|| is the area of a triangle having u and v as

adjacent sides.

The right-hand rule:

The cross product follows what is known as the right-hand rule. This means that if you curl the
fingers of your right hand from vector u to vector v, your thumb will point in the direction of
uxv.

Note: This means that k =ixj .
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Example 6: Suppose u = <2,—1,3> and v= <—4, 2, —6> . Calculate uxv.
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Example 7: Find the area of the triangle with vertices A(2,-3,4), B(0,1,2), and C(-1,2,0).
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Example 8: Suppose the following points are the vertices of a quadrilateral. Determine
whether the quadrilateral is a parallelogram. Find the area.
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The triple scalar product:

The dot product of u and v xw is called the triple scalar product.

Theorem (Triple Scalar Product):

Suppose u=ui+u,j+uk, v=vi+v,j+vk, and w=wi+w,j+wk . Then
u-(vxw)is the determinant of the matrix that has u, v, and w as Row 1, Row 2,
and Row 3, respectively.

U, , u

%)

u
u-(vxw)=|v, Vv,
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Theorem (Volume of a Parallelepiped):

The volume of a parallelepiped with vectors u, v, and w as adjacent edges is

Vv :|u-(v><w)|

Example 9: Find the volume of the parallelepiped having adjacent edges u = <1,3,1> ,
v=(0,6,6),and w=(—4,0,—4).
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Using the cross product to find torque:

Suppose a force F is applied at the point Q. The torque, or moment M of the force F about a
point P, measures the tendency of PQ to rotate counterclockwise about the point P.

The torque is given by

M = POxF . A
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Example 10: Suppose a bolt is tightened by applying a force of 40 N to a wrench that is 0.25 m
long. The force is applied at an angle of 75° to the axis of the wrench. Find the magnitude of the
torque about the center of the bolt.
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