12.1: Vector-Valued Functions

In \mathbb{R}^2 , a *plane curve* can be described using parametric equations x = f(t) and y = g(t), where *f* and *g* are continuous functions of *t* on an interval *I*. (See Section 10.2 for a review.)

In \mathbb{R}^3 , a *space curve* can be described using parametric equations x = f(t), y = g(t), and z = h(t), where *f*, *g*, and *h* are continuous functions of *t* on an interval *I*.

The plane curve or space curve is defined to be the *graph* (the set of ordered pairs or ordered triples) along with the defining parametric equations.

<u>Note</u>: The same graph can be generated by different sets of parametric equations. These are considered different curves, even though their graphs are the same.

Example 1: Sketch the graph defined by $x(t) = t^2 - 2$ and y(t) = 1 + t.

£	$x = t^2 - 2$	y = 1+E	
- 2	(-2)2-2=2	1-2=-1	(2,-1)
-)	$(-1)^2 - z = -1$	1-1=0	(-1,0)
Ø	02 - 2=-2	1+0=1	(-2,1)
١	- 1	1+1 =2	(-1,2)
2	2	1+2=3	(2,3)

Example 2: Compare the graph defined by $x(t) = 2\sin t$ and $y(t) = 3\cos t$ with the graph defined by $x(t) = 2\cos 2t$ and $y(t) = 3\sin 2t$.

Real-valued functions: Output is a real number. Vector-valued functions: Output is a vector.

Definition: A function of the form

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} = \langle f(t), g(t) \rangle \qquad (\text{in } \mathbb{R}^2)$$

or

 $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k} = \langle f(t), g(t), h(t) \rangle \qquad (\text{in } \mathbb{R}^3)$

is called a *vector-valued function*. The component functions f, g, and h are real-valued functions of the parameter t.

When working with vector-valued functions, we usually think of each output as a *position vector*. The initial point of a position vector is the origin; the terminal point is a point on a curve. Thus, as *t* increases, the vector-valued function traces the graph of a curve.

Example 4: What curve is represented by $\mathbf{r}(t) = \langle 3-t, 4+2t, 6-3t \rangle$?

$$\chi = 3 - t$$

 $y = 4 + 2t$
 $Z = (e - 3t)$
This is a line.
This is a line.

Domain of vector-valued functions:

For a value of t to be in the domain of a vector-valued function, it needs to be in the domain of <u>all</u> the component functions.

Example 6: Find the domain of
$$s(t) = \left\langle \ln(t+1), \sin(t), \frac{1}{t-2} \right\rangle$$
.
 $\chi(t) = \int n(t+1)$
 $\Rightarrow t+1 > 0$
 $t > -1$
 $t > -1$
 $\zeta(t) = \zeta(t) = \frac{1}{t-2}$
 $\zeta(t) = \frac{1}{$

Representing a curve by a vector-valued function:

Example 8: Represent the plane curve $y = 4 - x^2$ by a vector-valued function.

Let
$$\chi = t$$

Then $y = 4 - t^{2}$
 $\overrightarrow{r}(t) = \langle t, 4 - t^{2} \rangle$
or $\overrightarrow{r}(t) = tt + (4 - t^{2})\hat{j}$

Example 9: Represent the plane curve $x^2 + \frac{y^2}{5} = 1$ by a vector-valued function.

For an ellipse
$$\frac{N^2}{a^2} + \frac{y^2}{b^2} = 1$$
, you can let $\chi = a \cot y = b \operatorname{sint}$
Note: $(a \cot z)^2 + (b \sin t)^2 = 1$
 $\cos^2 t + \sin^2 t = 1$ True $\begin{cases} \operatorname{Our} & \operatorname{ellipse}: \\ \operatorname{Let} \chi = a \cot z = 1 \operatorname{cost} \\ y = b \sin t = 15 \operatorname{sint} \\ \overline{r}(t) = (\cos t, 55 \operatorname{sint}) \end{cases}$

Example 10: Find a vector-valued function that represents the line segment joining points P(3,4,-2) and Q(-4,-3,-1).

Example 11: Find a vector-valued function that represents the curve of intersection of the paraboloid $z = 4x^2 + y^2$ and the parabolic cylinder $y = x^2$.

$$z = k = bz = 4k^{2}ty^{2}$$
Let $x = t$.
Ulipses
$$then \quad y = x^{2} \Rightarrow y = t^{2}$$
Substitute $y = t^{2}$ into $z = 4x^{2}+y^{2}$
 $x = t$

$$z = 4t^{2}+(t^{2})^{2}$$

$$= At^{2}+t^{4}$$

$$\frac{1}{r}(t) = \chi t, t^{2}, 4t^{2}+t^{4}$$

Limits:

Definition: Limit of a Vector-Valued Function If $\mathbf{r}(t) = \langle f(t), g(t) \rangle$, then $\lim_{x \to a} \mathbf{r}(t) = \langle \lim_{x \to a} f(t), \lim_{x \to a} g(t) \rangle$, provided these limits of the component functions exist. If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, then $\lim_{x \to a} \mathbf{r}(t) = \langle \lim_{x \to a} f(t), \lim_{x \to a} g(t), \lim_{x \to a} h(t) \rangle$, provided these limits of the component functions exist.

The properties of limits (sum, difference, scalar multiples, etc.) for vector-valued functions are similar to those for real-valued functions.

Note: The limit of a vector-valued function is a vector.

Example 12: Suppose that
$$\mathbf{r}(t) = \frac{\sin t}{t} \mathbf{i} + \frac{t^2 - 1}{2t^2 + 1} \mathbf{j} + \cos(t) \mathbf{k}$$
. Find $\lim_{x \to \infty} \mathbf{r}(t)$. $\lim_{x \to \infty} \mathbf{r}(t)$. $\lim_{x \to \infty} \mathbf{r}(t)$

$$\lim_{x \to \infty} \mathbf{r}(t) = \langle 1, \frac{-1}{t}, \cos(0) \rangle$$

$$= \langle 1, \frac{-1}{t}, \cos(0) \rangle$$

$$= \langle 1, \frac{-1}{t}, \frac{1}{t} \rangle$$

$$= \langle 1, \frac{1}{t} \rangle$$

$$= \langle 1, \frac{1}{t} \rangle$$

$$= \langle 1, \frac{1}{t} \rangle$$

Example 13: Determine
$$\lim_{t \to 0} \left\langle \frac{e^{t}-1}{t}, \frac{\sqrt{1+t}-1}{t}, \frac{3}{1+t} \right\rangle$$
.
L'Hospital
L'Hosp

Continuity:

Definition: A vector-valued function **r** is *continuous at a point* given by t = a if $\lim_{t \to \infty} \mathbf{r}(t)$ exists and $\lim_{t \to \infty} \mathbf{r}(t) = \mathbf{r}(a)$. A vector-valued function **r** is *continuous on an interval I* if it is continuous at every point in the interval.

Example 14: On what intervals is $\mathbf{r}(t) = \langle \tan(t), t, t^2 \rangle$ continuous?

$$\vec{F}(t)$$
 is continuous except for $t = (2k+1)\frac{\pi}{2}$,
k any integer.

Example 15: On what intervals is
$$\mathbf{r}(t) = \left\langle \sqrt{4-t^2}, \frac{1}{t}, \frac{t-3}{5} \right\rangle$$
 continuous?
 $\sqrt{4-t^2}$ is defined for $-2 \le t \le 2$
 $4-t^2 = 0$ Also $t \ne 0$ (because of $\frac{1}{t}$)
 $4 \ge t^2$
 $t^2 \le 4$ \overline{r} is continuous on $(-2, 0) \cup (0, 2)$