13.10.1

13.10: Lagrange Multipliers

Suppose we want to maximize (or minimize) the function f(X,y) while making sure that
g(x,y) =K is true. In this situation, the condition g(X,y)=K is called a constraint.

Think of a sequence of level curves f(x,y)=c,, f(X.y)=c,, f(X,y)=c,, etc. At the optimal
value of C_, the curve f(X,y)=c, will “barely touch” the curve g(x,y)=Kk. We want to find
the points where f(X,y)=c, and g(X,Yy)=Kk share a common tangent line. For the curves to
share a common tangent line, their normal lines at the point of tangency P(X,,Y,) must be
identical. Therefore, their gradients must be parallel.

We can write Vf(X,,Y,) =4AV0a(X,,Y,), where A is a constant called a Lagrange multiplier.

If we extend the concept to functions on R’, we optimize f (X, Y, z) subject to the constraint
g(x,y,z) =Kk . In this case, the optimal point is point of common tangency between some level
surface f(X,y,z)=c, of f(X,Y,2) ,and the surface g(X,Y,z)=Kk, which can be thought of as
one of the level surfaces of g(X,Y,Zz). At the point of tangency, the gradient vectors

VI (X, Yy 2,) and Vg(X,,Y,,Z,) will be parallel.
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Lagrange’s Theorem: Suppose the functions f and g have continuous first partial derivatives,

and that f has an extremum at a point (X, Y,) on the smooth constraint curve g(X,y)=K.
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If Vg(x,,Y,) #0, then there exists a real number A such that Vf(x,,y,) =AVg(X,.Y,)-

Note: This can be extended to functions of three variables, in which f(X,y,z) has an
extremum on the smooth level surface g(X,Y,z) =K. In this case, there exists a real number
A such that Vf(X,,Y,,Z,) = AVA(X,» ¥y-2Z) -




13.10.2

The Method of Lagrange Multipliers:

Suppose f and g satisfy the hypotheses of Lagrange’s Theorem, that f has a maximum or
minimum value satistying g(X,y,z) =Kk, and that Vg(X,,Y,.2,)#0.

ard
Step 1: Find all values of A, X, and y,such that Vf (x,y,z) = AVg(X,y,z) and g(X,y,z) =K.

This means you’ll have to solve a system of simultaneous equations:

fo(Xy,2) =29,(X.,2)
f,(x.y,2)=19,(x.y.2)
f,(X.y.2) = 29,(X.Y,2)
H Oy =806 2

g(x,y,2)=k

Step 2: Evaluate f at each point obtained in Step 1. The largest of these values is the maximum,
and the smallest of these values is the minimum.

Example 1: Find the extreme values of (X, y)=4x+6Yy on the circle X’ +y> =13.
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Example 2: Find the maximum value of P = Xy’z subject to the constraint X+y+2z=32.
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Example 3: Find positive numbers X and Yy that minimize f(X,y)=3x+y+10 subject to the
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13.10.4

Example 4: A rectangular box without a lid is to be made from 12 square meters of cardboard.
Find the maximum volume of such a box.

le_ SYO G "\7<9w~Q\f @u:\‘@%.QS. - %Il\f‘b\’\l& ‘\'\AFS
6,0.5\'?9\/\ ON A(\\Q w\\:\l\ooard C'w\$§szo.& /)'F Mg,

wwx\;'oér‘zan Sos. Suwmmey” 205 noles,

Example 5: Find the maximum volume of a rectangular box inscribed in the ellipsoid
x> +3y° +42° =12.



13.10.5

Example 6: Find the point on the plane X—Yy+ z =4 that is closest to the point (1,2,3).

Example 7: Find the extreme values of f(X,y,z)=Xx"y’z* on the sphere X’ + Yy’ +2° =1.



13.10.6

Optimization problems with two constraints:

Suppose we want to find the extrema of f (X, Y, z) subject to two constraints, g(X,Y,z) =k and
h(x,y,z)=c. Then, the gradient of f must be a linear combination of the gradients of g and h. In

other words, if f has an extremum at (X, Y,,Z,) , then
V(X5 Yo 2y) = AVY(Xys Yo Zo) + 4VN(X,, ¥y.Z,) » Where A and g are scalars.

Lagrange’s method results in five equations in five variables:

f, =40, +uh,
f, =49, +uh,
f, =10, + uh,
g(x,y,2)=k
h(x,y,z)=c

Example 8: Find the extreme values of f(X,y,z)=3x—y—3z on the curve of intersection of
X+y-z=0 and X’ +22° =1.



13.10.7

Example 9: Find the minimum value of f(X,y,z)=X’+y’ +2” subject to the constraints
X+2z=6 and x+y=12.

Example 10: Suppose the temperature at each point on the sphere x* + y*> +2z° =50 is given by
the function T(X,Y,2) =100+ x* + y*. Find the maximum temperature on the curve formed by
the intersection of the sphere and the plane x—z=0.



