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1325 Partial Derivatives

Consider a function of two or more variables, such as f(X,y) =X’ +2x’y’ —y’. What would the
derivative represent? Rate of change with respect to what?

Partial differentiation is the process of finding the rate of change in a function with respect to
one variable, while holding the other variables constant.

Definition: Suppose z = f(X,y)is a function of X and y.

The partial derivative of f (or z) with respect to X is

‘Ys( L,\&@: ._;('2 f(X,y)=—= AHO fx+ AX’Ay)z - fxy) , provided this limit exists.

The partial derivative of f (or z) with respect to y is

, provided this limit exists.
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The partial derivative with respect to X, f (X,Y), gives the slope of the surface in the direction of
the x-axis.

The partial derivative with respect to 'y, f (X,Y), gives the slope of the surface in the direction of
the y-axis.

(We often refer to these as the first partial derivatives, to distinguish them from the second and

higher-order partial derivatives.)

Example 1: Find the ﬁrst partial derivatives of f(X,y)=x"+2x'y’ —y’.

Y(C«AJ\- *9:“0 kd

S, wap )
e @FF ﬂ

- oty = o)

xS Cdr\%*%\'
) C*"é\: O + 23 (3 - et .

61_56

™

n




>
13.8.2

Example 2: Suppose z=9-x"—y’. Find a and % at the point (\/5, 5).
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Example 3: Suppose z = ln\/7 . Find all the first partial derivatives.
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Example 4: Suppose f(X,y)= cos(x +y?). Find all the first partial derivatives. 3"6 (,’X» >
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Example S:  Suppose z = 1+ xy . Find all the first partial derivatives.
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- . Find all the first partial derivatives.
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Example 6: Suppose f (X, y)=—
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Example 7: Suppose f(X,y,2z)=23xyz’ +L —22 . Find all the first partial derivatives.
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Example 8: Suppose z = x%¢" . Find all the first partial derivatives.
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Example 9: Suppose f(X,Y,2)= X"y’ +2xyz—3yz. Find all the first partial derivatives at the
point (-2,1,2).
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Example 10: Find the slope in the x- and y-directions of the surface given by
f(X,y) = xsin(X+Y) at the point (%,%j
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Higher-order partial derivatives:

The second partial derivatives of z = f (X, Yy) are defined as follows: y v t.
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Example 11: Suppose f(X,Y)= xsin(4x—3y). Find all the second partial derivatives.
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Example 12: Suppose f(X,y,z)= 322
X+

. Find all the second partial derivatives.
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13.5.5

Theorem: Equality of Mixed Partial Derivatives
(sometimes known as Clairut’s Theorem).

If f is a function of X and y such that f, and f, are continuous on an open
disk R, then

fy (X ¥)=f (X,y) forevery (X,¥) inR.

This theorem also applies to third- and higher order derivatives, and to functions of three or more

variables. As long as all the higher-order partial derivatives are continuous, all the mixed partial
derivatives of that order will be equal.
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Example 14: Determine whether the following functions satisfy the partial differential equation
(PDE) u,, +u,, =0, known as Laplace’s equation. @“\L 5@*(,0% %3 (-0 — o Y C_,%; ,\qcy
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