14.1.1

14.1: Iterated Integrals and Area in the Plane

Suppose f is a function of two variables that is continuous on the rectangle R =[a,b]x[c,d].

d
The notation _[ f(x,y) dy means that we consider X to be fixed (constant), and we integrate
C

f(X,y) with respecttoy from y=c to y=d . This is called partial integration. The result is a
function of X:

A(X) = Ld f(x,y)dy.

This new function A(X) can be integrated with respect to X from x=a to X =b, resulting in:
b b d
L A(X) dx :L [_L f(xy) dy} dx

b ed

We omit the brackets and write '[ '[ f(x,y) dy dx, called an iterated integral.
aJc

Note: The order of integration is “from the inside out.”

b
Similarly, the notation I f(x,y) dx means that we consider y to be fixed (constant), and we

integrate f(X,y) with respect to X from x=a to Xx=b. The result is a function of y:

By =, fouy) dx.

This new function B(y) can be integrated with respect to y from y=¢ to y=d, resulting in:

Ld B(y) dx = J;d U: f(x,y) dx] dy = Ld I: f(x,y)dxdy

Example 1: Calculate IX Y dy.
* X

Example 2: Calculate jy Yy dx.
y X
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2 3 3 p2
Example 3: Calculate jo _[1 2x%y* dy dx and L _[0 2x7y* dx dy.

Definition: (Double Integral) (See Section 14.2 in Larson book.)

Suppose f(X,Y) is defined on a closed, bounded region R in the plane. Also
suppose that R is partitioned into n rectangles in such a way that the norm of the
partition (diagonal of the largest rectangle, denoted ||A|| ) approaches 0 as the

number of rectangles approaches infinity. (In other words,

A|—0as n— o).
Then the double integral of f over R is

jjf(x,y)dA: lim Zn:f(xi,yi)AA.

[A]—0,n—>
R

where AA is the area of the ith rectangle, and (X, Y;) is any point in the ith
rectangle (provided this limit exists).

Using double integrals to find area:

To find area of a region, we integrate the constant function f(X,y)=1. (Because if f(x,y)=1,
then f(X;,y,) AA =AA.If we add up all the areas AA , we can approximate the area of our

Lol [,

We’ll also need the following theorem, which allows us to break down our double integral
_[ _[ f (X, y) dA into an iterated integral using dx and dy . ;}
" T

Fubini’s Theorem: (Minor League Version) ‘//

If f(x,y) is continuous on the rectangle R =[a,b]x[c,d], then -

region.)

H f(x,y) dA:I:jcd f(x,y)dy dx:jcdf: f(x,y)dxdy.
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Example 4: Use an iterated integral to find the area of the region described by the inequalities
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Theorem: (Area of a Region)

T T v U

The area of the region bounded by the graphs of y=0,(X), Yy=0,(X), X=a, x=Db is given
by a0

gl(x)
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rovided and @, are continuous..
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The area of the region bounded by the graphs of x=h,(y), x=h,(y), y=c, y d is gwen

T by
S‘X q\ (‘\‘)\ dy I I:((y);) provided h, and h, are continuous. j; %
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Example 5: Find the area of the triangle bounded by the graphs of y =2x, y=0,and x=3.
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Set up integrals to find the area of the region bounded by the graphs of y = Jx
/p’
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Example 6:
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Example 7:

=7

Example 8:

and X=9.
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Find the area of the region bounded by the graphs of Xy=9, y=X and y=0,
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= = I:LZ; f(x,y) dx dy
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Switching the order of integration:
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Example 9: For the given iterated integral, sketch the region of integration and then switch the

order of integration. Caceant
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Example 10: For the given iterated integral, sketch the region of integration and then switch the

order of integration.

I: j:_xz f (x.y) dy dx

Example 11: Sketch the region R whose area is given by the iterated integral. Switch the order
of integration and show that both orders yield the same area.
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Example 12: Sketch the region R whose area is given by the iterated integral. Switch the order Lign A
ron N

of integration and show that both orders yield the same area. T in \
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Example 13: Calculate the iterated integral.
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Example 14: Calculate the iterated integral.

Lz _[0” X cos(Xy) dx dy




