14.2.1

14.2: Double Integrals and Volume

Definition: (Double Integral)

Suppose f(X,Y) is defined on a closed, bounded region R in the plane. Also suppose that R is
partitioned into n rectangles in such a way that the norm of the partition (diagonal of the
largest rectangle, denoted ||A|| ) approaches 0 as the number of rectangles approaches infinity.

(In other words,

A|—0 as n— o). Then the double integral of f over R is

”f(x,y)dAz lim zn:f(xi,yi)AA.

[A]—-0.n—>w
R

where AA is the area of the ith rectangle, and (X, Y;) is any point in the ith rectangle
(provided this limit exists). If this limit exists, then f is integrable over R.

Volume of a Solid Region

Iff is integrable over a plane region R and f(X,y)>0 forall (X,Y) in R, then the volume of
the solid region that lies above R and below the graph of f is

[J foxy) dA.

Properties of Double Integrals

1. jjcf(x,y)dA:cjjf(x,y)dA

2 Lj[f(x,y)+g(x,y)]dA=jRjf(x,y) dA+jRjg(x,y>dA

3. [[foayydAz0 if f(x.y)=0

4. Rjf(x,y)olAszjg(x,y)olA iffenZe0y)  (for GG\ © TZ>

5. ” f(x,y)dA= ” f(x,y) dA+ ” f(X,y) dA, where R is the union of two nonoverlapping
R R Ry

subregions R, and R, .



14.2.2

To evaluate a double integral H f(X,y) dA, we must rewrite it as an iterated integral. (We

R
replace dA by either dydx or by dxdy . and we replace R by the corresponding limits of
integration.

Fubini’s Theorem:

Suppose f(X,Y) is continuous on the plane region R.

IfR is defined by a<x<b and g,(x)<y<g,(X), where g, and g, are continuous on [a,b],
then

IRJ' f(x,y) dA =j:jgg((:)) f(x,y) dy dx.

Risdefined by c<y<d and g,(X)<y<0,(X), where h, and h, are continuous on [c,d],
then

_LI f(x,y)dA =j: .[hiiy)) f(x,y)dxdy.




14.2.3

Example 1: Evaluate ” dA, where R is the region bounded by the graphs of y=0 ,

1+ x°
y= \/; and X=4.
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14.2.4

Example 3: Evaluate H (2x+3y+7) dA, where R is the region bounded by the graphs of
R

y=%x and y=\/§.

Example 4: Find the volume of the solid bounded above by the surface X+2y+3z =6 in the
first octant.
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Example Find the volume of the solid in the first octant bounded by the graphs of
y=4-x"and z=4-x
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Average value of a function: .

R
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Definition: Average Value of a Function

Iff is integrable over a plane region R, then the average value of f over R is

1
Average value = K'Lj f(x,y)dA,

where A is the area of R.

Example 6: Find the average value of f(X,y)=sin(X+ Y) on the rectangle with vertices

(0,0, (7,0), (ﬁ,%) and (o,g) . N
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