15.3.1

(3,9

إعما

15.3: Conservative Vector Fields and Independence of Path

Example 1: Find the work done by $F(x, y) = 15x^2y^2 + 10x^3y^2$ in moving a particle from (0,0) to (3,9) along the following two paths: (a) $r_1(t) = \langle t, 3t \rangle$, $0 \le t \le 3$; (b) $\sigma = \int_{a}^{b} f \cdot dr$, where dr = r'(t) dt(b) $r_2(t) = \langle t, t^2 \rangle$, $0 \le t \le 3$. $F(5, y) = \langle t \le \pi^2 y^2 \le t \le 3$. $F(5, y) = \langle t \le \pi^2 y^2 \le t \le 3$. $F(5, y) = \langle t \le \pi^2 y^2 \le t \le 3$. $F(t) = \langle t, 3 \rangle$, $dt = \int_{a}^{3} \langle t \le t^2 (t)^2 (3t)^2 \cdot (1, 3) dt$ (b) $r_1(t) = \langle t, 3 \rangle$, $dt = \int_{a}^{3} \langle t \le t^2 (3t)^2 \cdot (1, 3) dt = \int_{a}^{3} \langle t \le t^2 (3t)^2 \cdot (1, 3) dt = \int_{a}^{3} \langle t \le t^2 (3t)^2 (3t)^2 \cdot (1, 3) dt = \int_{a}^{3} \langle t \le t^2 (3t)^2 (3t)^2$

Suppose *R* is an open region in \mathbb{R}^2 or \mathbb{R}^3 that contains the piecewise smooth curve *C*, given by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$ or $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, $a \le t \le b$.

Suppose that $\mathbf{F}(x, y) = M \mathbf{i} + N \mathbf{j}$ is conservative and that the component functions *M* and *N* are continuous. (Or, in \mathbb{R}^3 , that $\mathbf{F}(x, y, z) = M \mathbf{i} + N \mathbf{j} + P \mathbf{k}$ is conservative and *M*, *N*, and *P* are continuous.) Then,

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = f(x(b), y(b)) - f(x(a), y(a)) \quad (\text{in } \mathbb{R}^{2}),$$
$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = f(x(b), y(b), z(b)) - f(x(a), y(a), z(a)) \quad (\text{in } \mathbb{R}^{3})$$

where f is a potential function of **F** (i.e., $\mathbf{F}(x, y) = \nabla f(x, y)$ or $\mathbf{F}(x, y, z) = \nabla f(x, y, z)$).

15 the vector field in Example 1 conserveding? $\frac{\partial N}{\partial y} = \frac{\partial}{\partial y} (15x^2y^2) = 30x^2y$ $\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} (10x^3y) = 30x^2y$ <u>Note</u>: This means that the work done by a conservative vector field is *independent of path*. No matter what path is used to move a particle from Point A to Point B, the work is the same.

$$\begin{split} F(x,y) &= 15x^{2}y^{2} + 10x^{2}y^{2} \text{ along paths (a) } r(t) = (t,3t), 0 \leq t \leq 3; (b) r_{s}(t) = (t,t^{2}), 0 \leq t \leq 3. \end{split}$$

$$\begin{aligned} \text{the already varified then FTS constructive. Now find F such that \\ F(x,y) &= \int f_{x} dx = \int Th dx = \int (5x^{2}y^{2} dx = (5x^{3}y^{2} + q(y)) = f_{x} dx = \int Th dy = \int (5x^{3}y^{2} + q(y)) = f_{x} dx = \int Th dy = \int (5x^{3}y^{2} dx = (5x^{3}y^{2} + q(y)) = f_{x} dy = f_{x} dy = \int (5x^{3}y^{2} dx = (5x^{3}y^{2} + q(y)) = f_{x} dy = f_{x} dy = \int (5x^{3}y^{2} + q(y)) = f_{x} dy = f_{x} dy = \int (5x^{3}y^{2} + q(y)) = f_{x} dy = f_{x} dy = \int (5x^{3}y^{2} + q(y)) = f_{x} dy = f_{x} dy = f_{x} dy = f_{x} dy = (5x^{3}y^{2} + h(x)) = 5x^{3}y^{2} + h(x) = f_{x} dy^{2} + g(y) = f_{x} dy = f$$

<u>Definition</u>: A region in \mathbb{R}^2 or \mathbb{R}^3 is said to be *connected* if any two points in the region can be joined by a piecewise smooth curve lying entirely with the region.

If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is the same for every piecewise smooth curve from Point A to Point B, then we say that the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is *independent of path*.

For open regions that are connected, the path independence of $\int_C \mathbf{F} \cdot d\mathbf{r}$ is equivalent to \mathbf{F} being conservative.

This theorem, when combined with the Fundamental Theorem of Line Integrals, results in the following:

Theorem:

Suppose $\mathbf{F}(x, y, z) = M \mathbf{i} + N \mathbf{j} + P \mathbf{k}$ has continuous first partial derivatives in an open connected region *R*, and suppose that *C* is any piecewise smooth curve in *R*. Then the following conditions are equivalent.

1. **F** is conservative. That is, $\mathbf{F} = \nabla f$ for some function *f*.

2. $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path.

3. $\int_C \mathbf{F} \cdot d\mathbf{r} = 0 \text{ for every closed curve } C \text{ in } R.$

$$(f = \nabla f, \text{ then } \int_c \vec{F} \cdot d\vec{r} = f(a_2, b_2, c_2) - f(a_1, b_1, c_1)$$

$$This will be 0$$

$$if (a_2, b_2, c_2) = (a_1, b_1, c_1).$$

<u>Note</u>: A *closed curve* is a curve in which the beginning and ending points are the same. That is, if the curve C is given by $\mathbf{r}(t)$, $a \le t \le b$, then $\mathbf{r}(a) = \mathbf{r}(b)$.

Example 4: Evaluate
$$\int_{c} (\sin y \, dx + x \cos y \, dy)$$
 if C is a smooth curve from $\left(3, \frac{\pi}{2}\right)$ to $\left(-7, \frac{\pi}{4}\right)$.
(a) $\left(126, 79\pi\right)$ for $\left(126, 79\pi\right)$ for

Example 5: Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = \langle 8xy - 12x^3, 4x^2 - 4y \rangle$ and C is the path from (0,1) to (2,0), along the first-quadrant portion of the ellipse $\frac{x^2}{4} + y^2 = 1$. Method I: Parametrize C. xLt)= 1 sint $\overline{r}(\varepsilon) = \langle 2sint, cost \rangle, 0 \le \varepsilon \le \overline{z}$ $\overline{r}(\varepsilon) = \langle 0, \overline{7}, \overline{r}(\overline{z}) = \langle 2, \overline{7} \rangle$ y (E) = cost $\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{0}^{\frac{1}{2}} \overrightarrow{F} \cdot \overrightarrow{F} \cdot (\overrightarrow{F}) d\overrightarrow{F} =$ $= \int_{0}^{T/2} \lfloor 8(2 \operatorname{sint}) \operatorname{cost} - \operatorname{12}(2 \operatorname{sint}), + (2 \operatorname{sint})^{2} - 4 \operatorname{cost}) \cdot \lfloor 2 \operatorname{cost} - \operatorname{sint} dt$ = So <16 sint cost - 96 sin³t, 16 sin²t - 4 cost > <2 cost, - sint of = $\int_0^{T_{t}} (32 \operatorname{sint} \cos^2 t - 192 \operatorname{sin}^3 t \cos t - 16 \operatorname{sin}^2 t + 4 \cos t \operatorname{sint}) dt$ $Y_{uk}!$ If \vec{F} is conservative, we have other options, Is it conservative in = $8xy - 12x^3$, $N = 4x^2 - 4y$ Dry = 8x, DN = 8x. Yes! His By = 8x, DX = 8x. Yes! His consurvative. So, we have at least 2 other options: Method 2: Find a potential Fundion and apply the Fundamental Theorem of Line Integrals. Method 3: Choose an easier path (probably a line). (Because F is conservative, F. dr is independed of path.) Both of these are worked out in Summer Nodes.