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15.3: Conservative Vector Fields and Independence of Path M
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Example 1: Find the work done by F(X,y)=15x’y*i+10x’y j in moving a particle from
(0,0) to (3,9) along the following two paths: w&g
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Theorem: Fundamental Theorem of Line Integrals

Suppose R is an open region in R*or R* that contains the piecewise smooth curve C, given
by r(t)=x(t)i+y)jor rit)=xt)i+y®) j+zt)k, ast<b.

Suppose that F(X,y) =M i+ N jis conservative and that the component functions M and N

are continuous. (Or, in R’, that F(X,y,z)=M i+ N j+ Pk is conservative and M, N, and P
are continuous.) Then,

_[CF~dr = jc Vf -dr = f (x(b), y(B))— f (x(a), y(@)) (in R?),

LF -dr= jc Vf -dr = f (x(b), y(b), z(b)) - f (x(@), y(a),z(a)) (in R*)

where f is a potential function of F (i.e., F(X,y)=Vf(X,y) or F(X,y,2)=Vf(x,y,2)). LOS
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15.3.2

Note: This means that the work done by a conservative vector field is independent of path. No
matter what path is used to move a particle from Point A to Point B, the work is the same.
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Example 2: Apply the Fundamental Theorem of Line Integrals to Example 1.
F(x,y) =15y’ i+10xy j along paths (a) r,(t) =(t.3t), 0<t<3;(b) i, () =(t.t*), 0<t<3.
Ve a&m«&é e Liad ™y T T Cev\uNoJrI\u, ow) u\E;,\A € s wdla *3’\@\‘_¢
7 2 =
-Y(:Lb@ - §¥* a\’ﬂ = g\’\d’)‘ = g\d.)’%(d XL = L%_;/“E %_7- " 06("6‘) V.Y ;’
@ = “3-;5\&4 « %%)
> 2
= = \ d\ = \ > - 2z
S Sh% Sy - 8 RN TN TR
oo, tha prladed Fandlon B Qe = S8 < K 2. Tto 555
! - . —~ > - )
wole = S, F 5L = { F-a7, = 510 @3 5 &PsF - 50 D

(0)03
Example 3: Evaluate | (6xdx—4zdy—(4y—20)dz) if C is a smooth curve from (0,0,0) to
C
(3.4,0). R
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15.3.3

Definition: A region in R*or R’ is said to be connected if any two points in the region can be

joined by a piecewise smooth curve lying entirely with the region.
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If L F -dr is the same for every piecewise smooth curve from Point A to Point B, then we say

that the line integral jc F -dr is independent of path.

For open regions that are connected, the path independence of L F -dris equivalent to F being

conservative.

Theorem:
If F is continuous on an open connected region in R* or R, then the line integral

ICF-dr

is independent of path if and only if F is conservative.

This theorem, when combined with the Fundamental Theorem of Line Integrals, results in the
following:

Theorem:

Suppose F(X,y,2)=M i+ N j+Pk has continuous first partial derivatives in an open

connected region R, and suppose that C is any piecewise smooth curve in R. Then the
following conditions are equivalent.

1. Fis conservative. That is, F = Vf for some function f.

2. IC F -dr is independent of path.
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ch F-dr =0 for every closed curve C in R.




15.3.4

Note: A closed curve is a curve in which the beginning and ending points are the same. That is, if
the curve C is given by r(t), a<t<b, then r(a)=r(b).
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Example 4: Evaluate IC (sin ydx+ xcos ydy) if C is a smooth curve from (3,%) to (—7,£j .
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15.3.5

Example 5: Evaluate J.C F-dr, where F = <8xy —12x°,4%° —4y> and C is the path from (0,1)

2
to (2,0), along the first-quadrant portion of the ellipse XT+ y? =1.
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